The implementation of mandatory tire lebelling regulations urgent need the design theory and method for synchronously improving tire multi-capabilities. Tire tread pattern structural design is critical to enhance tire performances due to the limitations to rubber inherent properties. The unsteady flow such as water or air in tire footprint can lead to the contradiction between tread pattern noise and hydroplaning. Clarification the relationship between the flow field characteristics and tire properties is the key of solving the conflicts, and provide flow control method by virtual of tread design. Inspired by the bionic non-smooth surface reduce drag and noise, this project aims to reveal the contradiction by analyzing the relationship between the flow field parameters and pattern noise and hydroplaning behavior of selected tires, and disclosure the drag and noise reduction of tread pattern bionic non-smooth surface. Firstly, according to the Vortex sound theory and Gas-liquid two-phase flow model, we will study on unsteady flow field characteristics in ground contact area and could reveal the mechanism of tread pattern noise and hydroplaning behavior. Secondly, according to study the influence of structural parameters of tire tread on the performance of noise and hydroplaning, we will propose the relationships between flow field parameters and noise and hydroplaning, and reveal their contradictory mechanism. Lastly, by the way of control the flow field, the effect of tread pattern bionic non-smooth surface on control flow field will be carried out, and reveals the drag and noise reduction of tread pattern bionic non-smooth surface. After the influence law of the bionic non-smooth structure parameters on tire properties is executed, and we will provide the optimization method of tread pattern bionic non-smooth surface to resolve the contradictions. Expected results of the project will improve synchronously tire multi-capabilities and promote the tire tread pattern design technological innovations.
轮胎强制性标签法规的实施,迫切需求提升轮胎多性能的理论方法。受橡胶固有属性束缚,花纹结构成为提升多性能的关键。轮胎接地区域内水或空气等流体的非定常流动导致花纹噪声和滑水性能存在矛盾。解决矛盾的关键在于明晰流场参数与花纹噪声和滑水性能的关联关系,通过花纹设计实现对流场控制。受仿生非光滑表面减阻降噪功能启发,本项目拟开展流场诱导花纹噪声和滑水产生机理分析,阐明性能矛盾机制,揭示花纹仿生非光滑表面减阻降噪机理。首先,基于涡声理论和气-液二相流模型研究接地区域内非定常流体力学特性,揭示花纹噪声和滑水产生机制;其次,研究流场参数与花纹噪声和滑水性能的关联关系,揭示性能矛盾机理;最后,以控制流场为手段,开展花纹仿生非光滑表面流场控制减阻降噪机理研究,分析非光滑结构参数对性能影响规律,提出化解性能矛盾的花纹仿生非光滑表面优化方法。预期成果对实现轮胎多性能协同提升,推动花纹结构技术创新具有重要意义。
花纹结构是轮胎与地面接触的直接部件,花纹结构的不同,会影响接地区域内水或空气等流体的流动特性,从而导致花纹噪声和滑水性能存在矛盾关系。解决矛盾的关键在于明晰流场参数与花纹噪声和滑水性能关联关系,通过花纹设计实现对流场控制。为此,本项目主要围绕以下六方面开展研究:1)建立了花纹噪声和滑水性能分析模型,并结合噪声转鼓实验室测试和轮胎滑水试验结果,进行了模型准确性验证,在此基础上,通过掌握了不同花纹结构设计参数对花纹噪声和滑水性能的影响规律,明确了二者性能的矛盾关系,阐明了流场参数与花纹噪声和滑水性能的关联关系;2)基于流固耦合理论,开展了垂直花纹、点对称和轴对称等三种花纹对压力、流速和流线等流场特性的影响,明晰了导致二者性能矛盾关系主要体现在接地区内流体压力分布和花纹沟槽内流动特性;3)以控制流场参数为目的,提出了结合最优拉丁方试验设计、Kriging近似模型和NSGA-II优化方法,实现花纹噪声和滑水性能协同提升的花纹结构改形设计方法;4)通过对十款不同品牌轮、同一型号的轮胎进行压力特性试验,采用相关分析方法和主成分分析方法,建立了轮胎接地性态参数与花纹噪声和滑水性能的关系,提出了第二长轴系数具备表征花纹噪声和滑水性能的矛盾关系;5)基于仿生学原理,探索了V形仿生非光滑结构在非充气轮胎上的应用,研究了V形仿生非光滑结构的位置、排列方向和单元尺寸等因素对气动噪声影响,基于涡声理论,揭示了V形仿生非光滑结构降噪的机理;6)为研究轮胎空气动力学,开展了垂直花纹、点对称和轴对称等三种花纹的风洞试验,掌握了不同花纹结构的表面压力特性和噪声特性,为后续开展低风阻低噪声的轮胎结构设计奠定了良好的物理实验基础。本课题对涉及轮胎流体方面的性能,如对流换热、湿地制动,以及电动汽车用的低风阻轮胎结构设计等研究均具有重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
一种改进的多目标正余弦优化算法
基于混合优化方法的大口径主镜设计
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
Wnt 信号通路在非小细胞肺癌中的研究进展
车身非光滑表面气动减阻机理及其优化方法研究
非光滑表面减粘降阻机理的仿生研究
非光滑表面的湍流减阻和传热研究
仿生射流表面减阻特性及减阻机理研究