力学中变分不等式的边界元与有限元耦合方法

基本信息
批准号:19901004
项目类别:青年科学基金项目
资助金额:7.50
负责人:唐维军
学科分类:
依托单位:北京应用物理与计算数学研究所
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:付汉清,杨朝霞
关键词:
边界元有限元变分不等式
结项摘要

Consider solving the Dirichlet problem of Helmholtz equation on unbounded region with boundary a open smooth curve in the plane.国家自然科学基金资助项目结题报告4We use single-layer potential to construct a solution. This leads to the solution of a logarithmic integral equation of the first.kind for the Helmholtz equation. This equation if reformulated using a special change of variable, leading to a new first kind equation with a smooth solution function. This new equation is split into three parts. Then a quadrature method that takes special advantage of the splitting of the integral equation is used to solve the equation numerically. An error nalysis in a Sobolev space setting is given. And numerical results show that fast convergence is clearly exhibited.... In second paper, we propose a new numerical method to compute the ground state solution of trapped interacting Bose-Einstein condensation (BEC) at zero or very low temperature by minimizing.a functional. As preparatory steps we begin with the 3d Gross-Pitaevskii equation (GPE), scale it to get a one- parameter model and show how to reduce it to 2d and 1d GPEs. The ground state.solution is formulated via minimizing a functional under a constraint. The finite element approximation for 1d, 2d with.radial symmetry and 3d with spherical symmetry are presented and approximate ground state solutions, which will be used as initial guess in our practical numerical computation of the minimizing.problem, of the GPE in two extreme regimes: very weak interactions and strong repulsive interactions are provided. Numerical results in 1d, 2d with radial symmetry and 3d with spherical symmetry for atoms ranging up to millions in the condensation are reported to demonstrate the novel numerical method. .. In this paper, a exterior Signorini problem is reduced to a variational inequality on a bounded inner region with the help of.a coupling of boundary integral and finite element methods. We established a equivalence between the original exterior Signorini problem and the variational inequality on the bounded inner region coupled with two integral equations on an auxiliary boundary. We also introduce a finite element approximation of the variational inequality and a boundary element approximation of the integral equations. Furthermore, the optimal error estimates are given.

本项目对力学中出现的各种带磨擦边界的弹性,弹性-塑性,平板弯曲的单側现象,粘弹性雀骼啾浞植坏任侍饨惺捣椒ㄑ芯俊6晕藿缜蚣按蠓段颍捎帽呓缭胗邢拊詈戏椒ㄑ芯扛髦直浞植坏仁降氖当平

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
2

特斯拉涡轮机运行性能研究综述

特斯拉涡轮机运行性能研究综述

DOI:10.16507/j.issn.1006-6055.2021.09.006
发表时间:2021
3

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
4

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
5

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021

唐维军的其他基金

批准号:10671024
批准年份:2006
资助金额:20.00
项目类别:面上项目

相似国自然基金

1

半变分不等式的有限元方法

批准号:10771065
批准年份:2007
负责人:杨晓忠
学科分类:A0501
资助金额:23.00
项目类别:面上项目
2

小波有限元与小波边界元方法

批准号:19371030
批准年份:1993
负责人:徐长发
学科分类:A0501
资助金额:2.20
项目类别:面上项目
3

无网格Galerkin边界点法的自适应算法及其与有限元和边界元方法的耦合算法研究

批准号:11101454
批准年份:2011
负责人:李小林
学科分类:A0501
资助金额:23.00
项目类别:青年科学基金项目
4

航天器声固耦合振动问题的快速边界元-有限元方法研究

批准号:11272182
批准年份:2012
负责人:郑小平
学科分类:A0813
资助金额:78.00
项目类别:面上项目