In the aero-engine working process,suspended contaminant particles in the air will be drawn into the inlet ducts inevitably which is an environment of high temperature and high pressure. Some contaminants will gradually attached on the edge or surface of the gas path components to form fouling. The gas path components of inlet ducts deposition not only causes the aero-engine surge, but also leads to aero-engine off in the flight. As a result, it will endanger the flight safety, cause the decrease of EGTM, increase the fuel consumption rate, shorten the maintenance interval of aero-engine overhaul and increase the airline companies’ costs. This will also increase carbon emissions and threat to the environment. The aero-engine online washing is the main way to decrease the recession of the gas path of aero-engine, extend the working time of aero-engine and reduce the maintenance cost. The advanced aero-engine online washing equipment has been developed and used in abroad, but it can’t be sell to domestic airlines because of military reason. Domestic airlines either use the simple aero-engine online washing device which doesn’t have the very good washing effect, or rent the advanced aero-engine online washing equipment with the expensive rental. Therefore, aiming at the current situation of our country civil aero-engine online washing technology being in backward and the washing plan management system being in inadequate, some key technologies such as the mechanism of fouling in gas path components, multiphase flow kinematic, descaling dynamics, optimization of the technological parameter, on-site test of the washing effect and time interval prediction of online washing will be researched in this project. It is significant for the development of the advanced aero-engine online washing equipment, ensuring flight safety and reducing airline companies’ costs.
航空发动机在工作过程中,空气中的悬浮颗粒污染物不可避免地会被吸入到高温、高压的内涵道中,有些污染物会逐渐附着在气路部件表面或边缘形成污垢。内涵道气路部件结垢不仅会引起喘振,严重时会导致空中停车,危及飞行安全;而且会引起EGTM降低,燃油消耗率上升,缩短拆发维修间隔时间,增加运营成本;还会增加碳排放,威胁环境安全。航空发动机在翼清洗是针对结垢减缓气路性能衰退、延长在翼使用时间、降低使用维护成本的主要方法。国外研制了在翼清洗高端装备,但由于军事原因,国内航空公司不能购买,只可租用,且租金昂贵。国内研制的装备简单,清洗效果差。为此,本项目针对我国民用航空发动机在翼清洗技术落后以及清洗计划管理体系不足的现状,开展内涵道气路部件结垢机理、多相流运动学、除垢动力学、工艺参数优化、清洗效果现场检测、清洗时间间隔预测等研究,对于研制航空发动机在翼清洗高端装备,保证飞行安全,降低运营成本均具有重要意义。
航空发动机运行期间,空气中的颗粒不可避免地会粘附在叶片表面形成垢质,从而造成发动机性能衰退、增加油耗,严重时甚至会影响飞行安全。发动机在翼清洗能够有效的去除叶片表面垢质,恢复发动机性能。本项目采用实验和理论分析相结合的方法,研究航空发动机内涵道结垢机理及在翼清洗关键技术。通过采集发动机内部垢质,分析了发动机内涵道气路部件积垢规律,获得了航空发动机内涵道颗粒物多相多场耦合沉积模型。从清洗流场与垢质颗粒作用机制出发,构建了多相流动力学除垢与清洗现场评估模型,设计了航空发动机在翼清洗控制系统,优化了清洗过程作业参数。建立了静电传感器数学模型,提出了一种基于气路阵列式静电传感器的带电量估计方法,通过发动机台架试验,完成了发动机水洗作业评估。通过一种基于经验模态分解和自编码器的发动机气路参数去噪方法,实现气路参数真实趋势的提取,采用迁移学习的方法,获得了发动机水洗后EGTM预测模型,提出了一种基于强化学习框架获得最大航班收入的清洗决策。设计了具有自主知识产权的航空发动机在翼清洗高端装置,并在Ameco进行了应用验证。本项目着眼于航空发动机内涵道结垢规律,研究了发动机在翼清洗关键技术。基于上述工作,发表期刊论文25篇,其中SCI/EI检索的高水平学术论文23篇,申请发明专利7项,申请软件著作权2项,培养博士研究生4名,硕士研究生5名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于LASSO-SVMR模型城市生活需水量的预测
基于多模态信息特征融合的犯罪预测算法研究
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于非线性接触刚度的铰接/锁紧结构动力学建模方法
板式换热器结垢机理基础研究
绳索取心钻杆内壁结垢机理与控制方法
真空厕所排水管道结垢机理研究
膜蒸馏过程抗结垢全疏膜的构建及其抗结垢机制的研究