Rare earth upconversion luminescent nano-material has attracted much attentions due to its special anti-stokes light characteristics, but up to date, it is still a big problem about how to achieve low-cost, high-yield-rate and rapid preparation of rare earth doped upconversion luminescent nanoparticles with high luminous efficiency and nontoxicity. This project aims at the fabrication of novel rare earth doped upconversion luminescent nano-materials by contactless phase change process and their optical application study. By using lanthanum niobate and yttrium aluminum garnet as excellent optical matrix materials and designing the rational ratio of multi-doped rare earth ions, contactless phase change technology is chosen to try to realize the low-cost, high yield rate, and rapid synthesis of the rare earth doped upconversion luminescent nanoparticles with high light-emitting efficiency, nontoxicity and controllable morphology and structure. Smart design and subsequent modification of nano-structure is expected to enhance the luminous efficiency. We also will explore and reveal material growth mechanism in the preparation process, and investigate the intrinsic relationship between the multi-scale structures and the luminous properties, in order to provide the theoretical basis for developing new luminescent nano-material, optimizing the upconversion luminous performance, and creating the large-scaled preparation technology. The implementation of this project also provide important guidance of both theory and industrial applications for high-yield and controllable preparation of rare earth doped luminescence nanomaterials and their application in biological medicine, fingerprint recognition and the solar cells.
稀土掺杂上转换发光纳米材料因为其特殊的反斯托克发光特性受到广泛关注,但目前如何低成本、高产率、快速制备绿色高效的稀土掺杂上转换发光纳米粒子还是难题。本项目就稀土掺杂上转换发光纳米材料的无接触相变法制备和光学应用展开研究,由铌酸镧和钇铝石榴石这两种优异光学基质材料和稀土离子多元掺杂配比设计入手,利用无接触相变技术实现低成本、高产率、形貌和结构可控的绿色高效发光纳米材料的制备,并进一步对纳米结构进行设计和修饰,提高发光效率。探索揭示制备过程中的材料生长机理,建立多尺度结构与发光机制的关系,为开发新型上转换发光纳米材料、提升上转换发光性能及其宏量制备技术奠定理论基础。本项目的实施将为稀土掺杂上转换发光纳米材料的高产率可控制备及其在生物医药、指纹识别和太阳能电池等领域的应用提供重要的理论和工业应用指导。
稀土掺杂上转换发光纳米材料因为其特殊的反斯托克发光特性受到广泛关注,但目前如何低成本、高产率、快速制备绿色高效的稀土掺杂上转换发光纳米粒子还是难题。本项目就稀土掺杂上转换发光纳米材料的无接触相变法制备和光学应用展开研究,由钇铝石榴石(Y3Al5O12,YAG)和铌酸镧(La2O3-Nb2O5,LNO)这两种优异光学基质材料和稀土离子多元掺杂配比入手设计,利用气动悬浮-激光加热的无容器凝固技术,成功制备了稀土离子Ce3+掺杂的Al2O3-YAG共晶材料,其荧光性能优异,量子效率高达87.5%,在白色发光二极管中应用展现了高热稳定性和低光损失的优良性能。系统研究了该共晶材料的晶化温度、保温时间和升温速率等热处理参数对陶瓷结构、物相和性能的影响,阐明晶化动力学机理。采用该方法制备了镱(Yb3+)和铒(Er3+)共掺杂的LNO-氧化锆(ZrO2)复合陶瓷,研究发现掺有1 mol%Er3+和Yb3+的样品具有最强的上转换辐射性能,并深入研究了发光性能和机制,用于染料敏化太阳能电池中,由于上转换荧光的性质而提高了电池效率。采用火焰喷淬-快速冷却法宏量制备了透明的、表面光滑、无结晶痕迹的钛酸钡(BaTi2O5,BTO)和LNO玻璃微球。由高折射率LNO玻璃微球制备的涂层不仅可以有效反射可见光,而且可以大大增强近红外光的反射,最高反射可以达到58%。共发表论文19篇,其中SCI 收录17 篇,EI收录2篇,包括Nature Communications,Journal of Advanced Ceramics,Journal of the European Ceramic Society,Ceramics International等知名学术期刊论文;申请专利3 项,其中包括PCI专利1项。培养博士研究生2名,硕士研究生4名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
面向工件表面缺陷的无监督域适应方法
环形绕组无刷直流电机负载换向的解析模型
一种加权距离连续K中心选址问题求解方法
稀土掺杂铁电薄膜的上转换效率及其发光机理研究
稀土掺杂上转换发光纳米材料的合成及其在手印检验中的应用
镧系离子掺杂的上转换纳米粒子的激发光窗口调控
稀土掺杂CaSc2O4纳米晶上转换荧光调制及其发光物理