GaN-based high electron mobility transistors (HEMTs) show outstanding performance in communications, power electronics, and other fields. However, the evolution of traps caused by high temperature thermal stress and dynamic strong field during operation is the main reason for degradation of electrical characteristics parameters in GaN-based HEMTs, and it has become a key factor affecting its reliability and stability. This project aims to improve the reliability of GaN-based HEMT devices. It is proposed to improve the trap characteristics characterization method base on the transient drain current. It transforms the invisible trap evolution into a visual spectral line shift to achieve the spectral characterization of trap evolution. Using the "first separation after coupling" approach, the evolution of device traps under stress (multiphysics) coupling will be studied by spectral characterization technology. We focus on the analysis of the synergistic effects of high-temperature thermal stress and dynamic strong fields on trap evolution under high-frequency high-power applications. The relationship between device electrical parameter degradation and trap evolution will be quantified. The physical mechanism of the device's electrical parameters degradation caused by the evolution of traps will be clarified. The evolution of the electrical parameters related to the evolution of trap-related GaN-based HEMT devices will be established. Through in-depth study of basic scientific issues, this project strives to provide theoretical and data support for improving the performance and reliability of GaN-based HEMT devices.
GaN基高电子迁移率晶体管(HEMT)在通讯、电力电子等领域表现出了卓越的性能。然而,高频大功率应用下,高温热应力和动态强场引起的陷阱演化问题,是导致GaN基HEMT器件电学特性参数退化的主因,成为影响其可靠性和稳定性的关键因素。本项目以提高GaN基HEMT器件可靠性为导向,拟通过完善基于漏极电流瞬态变化的陷阱特性表征方法,将不可见的陷阱演化转化为可视化的谱线移动,实现陷阱演化的谱值化表征。以此为技术手段,采用“先分离后耦合”的方式,研究应力(多物理场)耦合下器件陷阱演化特征;重点分析高频大功率应用下,高温热应力和动态强场对陷阱演化的协同作用机制;定量分析器件电学参数退化与陷阱演化之间的关系;阐明陷阱演化引起器件电学参数退化的物理内涵;并建立陷阱演化相关的GaN基HEMT器件电学参数退化模型。通过深入研究基础科学问题,力争为GaN基HEMT器件性能和可靠性的提高提供理论和数据支持。
GaN基高电子迁移率晶体管(HEMT)器件在通讯、电力电子等领域表现出了卓越的性能。然而,其工作时产生的高温热应力、动态强场、辐照等导致的微区结构损伤和陷阱演化问题,是GaN基HEMT器件电学特性参数退化的主因,成为影响其可靠性和稳定性的关键因素。本项目以提高GaN基HEMT器件可靠性为导向,通过完善基于漏极电流瞬态变化的陷阱特性表征方法,定量确定不同应力作用下的损伤(陷阱)对漏极电流变化的贡献,将不可见的器件微区结构损伤和陷阱演化转化为可视化的谱线移动,实现了器件微区结构损伤位置和损伤程度的无损、快速、准确表征。以此为技术手段,采用“先分离后耦合”的方式,研究应力(多物理场)耦合下器件陷阱演化特征;重点分析机械应力、高温热应力、动态强场和辐照等对器件微区结构损伤和陷阱演化的协同作用机制;定量分析器件电学参数退化与损伤/陷阱演化之间的关系;阐明损伤/陷阱演化引起器件电学参数退化的物理内涵;并建立陷阱演化相关的GaN基HEMT器件电学参数退化模型。通过深入研究基础科学问题,为GaN基HEMT器件性能和可靠性的提高提供理论和数据支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
农超对接模式中利益分配问题研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
基于细粒度词表示的命名实体识别研究
基于图卷积网络的归纳式微博谣言检测新方法
GaN基HEMT器件陷阱及缺陷表征分析方法及相关退化机理研究
针对GaN基高频功率HEMT从材料缺陷到器件性能的深能级陷阱机理研究
基于金刚石钝化散热的GaN HEMT功率器件研究
基于电-热-力-陷阱完全耦合建模的AlGaN/GaN HEMT电学性能退化研究