Quantum well infrared photodetectors (QWIP) is widely recognized as the third generation infrared focal plane arrays. At present, the development direction of QWIP is large arrays and multi-color arrays. It has received much attention in the world because the new generation of quantum well infrared focal plane array is one of the best technological approaches to realize multi-color staring focal plane arrays.And due to the limitations of the quantum transition selection rule, the vertical incident light can’t be absorbed by the quantum wells,some diffraction structure must be taken to change the direction of the wave vector. The quantum efficiency is relatively low. In order to solve this problem,this project proposes to improve the quantum efficiency of QWIP by using the quantum control function of the photon micro-cavity and the resonance enhanced absorption effect,and to explore the theory and the realization.We have obtained over 40% efficiency for two-color with chirp multi ring structure from calculation and not to be reported.We shall continue to finish the design theory and realization.The research group has rich technology accumulations of more than ten yearsin the field of quantum well infrared photodetectors and photonic micro-cavity,the combination of the quantum well infrared photodetectors and photonic micro-cavity will promote the progress of theory and technology.This project will make a systematic research on the theory and design of the two-color photon resonance micro-cavity and its application in two-color quantum well infrared detectors,and also solve the key problems such as the accurate substrate thinning and so on. The quantum efficiency will be improved from the existing10-20% to 30-40%.
量子阱红外探测器(QWIP)被公认为第三代红外焦平面探测器,向着大面阵、多色的方向发展,是实现凝视型多色大焦平面阵列最佳技术之一。而由于量子跃迁选择定则的限制,使得垂直入射的光不能被量子阱吸收,必须采取衍射结构改变波矢方向,目前量子效率还相对较低。针对这一问题,本项目提出利用光子微腔的量子调控功能及共振增强吸收效应来提高QWIP的量子效率,在前期的初步设计计算中,利用啁啾多圆环结构,我们得到中长波双色40%以上的量子效率,目前国内外还未见关于双色共振微腔设计的报道,本项目将继续完善设计,并进行实验研究。课题组在量子阱红外探测器及光子微腔研究方面已有十几年的积累,将二者结合的新型探测器有助于推动理论和技术的进步。本项目将在光子双色共振微腔理论及其在双色量子阱红外探测器的应用和实现上做深入的研究,同时解决影响微腔性能的衬底精确减薄工艺。目标是使现有10-20%的量子效率提高到30-40%。
红外焦平面探测器,在工业监控,海上救援,医疗诊断,天文观测,以及国防等领域有广泛的应用前景。目前高灵敏度红外成像器件一般都在3~5 mm和8~14 mm这两个大气窗口工作。量子阱红外焦平面探测器(QWIP)是基于先进的材料外延技术和能带工程理论基础上的新型红外探测技术,与传统的技术相比,在均匀性,抗辐照,大面阵,多色集成和加工成本等方面具有明显优势,是实现凝视型大焦平面阵列,特别是双色和多色焦平面的最佳技术途径之一。但是,由于量子阱红外探测器是基于子带跃迁,受量子跃迁选择定则限制,不能吸收正入射的光辐射,必须采用衍射结构改变波矢方向,量子效率低。针对这一问题,结合课题组在光子微腔设计及双色红外焦平面探测器方面的长期工作积累,本项目提出利用光子微腔的量子调控功能及共振增强吸收效应来提高QWIP的量子效率,并在双色共振微腔理论、设计、器件等方面进行探索,具体如下:.(1)针对双色光子共振微腔量子阱红外探测器,综合考虑光子的输入、耦合、震荡、吸收等因素,建立理论仿真模型,并对器件进行理论仿真设计。对微腔基本形状、表面光栅深度、形状、占空比、结构厚度等多个参数进行优化设计,获得中波4.04µm处最高量子效率31.66%,长波8.5µm处最高量子效率56%。.(2)针对光子共振微腔的结构特点和双色量子阱红外探测器的器件要求,完成光子共振微腔双色量子阱红外探测器的材料结构设计并完成材料生长;完成器件工艺流程设计,并根据流程需要完成光刻版的设计、制作;完成器件流片;优化开发器件测试系统,并完成背入射测试装置的设计制作,完成器件测试评估。.(3)围绕本项目研究成果,发表文章3篇,申请专利3项,获得版权2项,培养研究生2名。
{{i.achievement_title}}
数据更新时间:2023-05-31
转录组与代谢联合解析红花槭叶片中青素苷变化机制
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
双吸离心泵压力脉动特性数值模拟及试验研究
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
基于图卷积网络的归纳式微博谣言检测新方法
新型光伏、双色量子阱红外探测器研究
金属微腔耦合太赫兹量子阱光子探测器研究
量子阱红外探测器研究
量子阱红外探测器研究