随着现代数据的收集和储存技术的提高,统计数据呈现出高维性。由于可重复研究的限制,参加研究的个体数量相对很小。这就是现代统计学中最具挑战的"大p,小n"问题。具体地说,数据的维数大大超过样本的个数。 这尤其表现在生物基因学研究,网络信息,以及金融数据中。如何在样本量不是很大的前提下分析超高维数据,是一个非常具有挑战的、也是国际统计学的前沿课题。本项目将着重在五个方面对高维数据统计建模与分析进行科学的,系统的研究。这五个方面是:(1)高维数据的变量选择、(2)超高维多元统计分析、(3)复杂数据的相关性、(4)大规模在线数据的监控和(5)高维生存数据分析。这五方面的研究均对传统的统计推断理论提出了全新的挑战,且均是目前国际统计学研究的最前沿问题。这五个课题相对独立又相互依托,有理论也有应用,将从不同的方向对高维数据的统计推断提出有效的解决方法,建立一个统一的适应于高维数据统计建模与分析的框架。
随着现代数据的收集和储存技术的提高,统计数据呈现出高维性。由于可重复研究的限制,参加研究的个体数量相对很小。这就是现代统计学中最具挑战的“大p,小n”问题。具体地说,数据的维数大大超过样本的个数。 这尤其表现在生物基因学研究,网络信息,以及金融数据中。如何在样本量不是很大的前提下分析超高维数据,是一个非常具有挑战的、也是国际统计学的前沿课题。本项目着重在五个方面对高维数据统计建模与分析进行科学的,系统的研究。这五个方面是:(1)高维数据的变量选择、(2)超高维多元统计分析、(3)复杂数据的相关性、(4)大规模在线数据的监控和(5)高维生存数据分析。这五方面的研究均对传统的统计推断理论提出了全新的挑战,且均是目前国际统计学研究的最前沿问题。这五个课题相对独立又相互依托,有理论也有应用,将从不同的方向对高维数据的统计推断提出有效的解决方法,建立一个统一的适应于高维数据统计建模与分析的框架。本重点项目在五个子课题方面都取得了不斐的成绩和结果,解决了一系列高维统计推断的关健问题。5年中发表、接受发表的论文有106篇,其中有12篇在国际统计学的顶尖的四个期刊上发表。另外有数篇在国际精算期刊和经济计量期刊上发表。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
高维数据的半参数回归建模与统计分析
高维数据建模与分析的若干问题
高维时空场数据的层次张量建模与分析方法
高维数据的稳健统计分析及相关问题