面向机器人的Spiking神经网络小储备池计算理论及其应用研究

基本信息
批准号:61473051
项目类别:面上项目
资助金额:80.00
负责人:薛方正
学科分类:
依托单位:重庆大学
批准年份:2014
结题年份:2018
起止时间:2015-01-01 - 2018-12-31
项目状态: 已结题
项目参与者:李秀敏,李楠,赖俊峰,敖伟,罗小锁,陈强,王玮,向剑,钟玲
关键词:
人工神经网络储备池计算脉冲神经网络机器人控制智能机器人
结项摘要

The rapid development of robotic applications makes increasing demands of robot system design tools such as artificial neural networks. But as the third generation of neural network and has good prospects in the field of robotics, Spiking Neural Network (SNN) has not been widely used. On this issue, this project aims to carry out research from the modeling study, then the application of typical robot, and finally into the basic research of SNN toolbox, with the application of reservoir computing of SNN as a starting point. By analyzing the advantages and challenges of SNN in the field of robotics, we propose the concept of "small reservoir" which serves as a core, study a series of questions such as, the modeling of SNN with small reservoir, the construction of reservoir topology, and then build computational model with the optimal performance and the smallest size. With the guidance of mechanism research and statistical analysis, the method of optimization of topology and parameter, the index of information entropy and accuracy, we plans to design a method with multi-mechanism integration and multi-objective optimization, to obtain suitable spiking neural networks for specific target task. In addition, with the representation of multi-task robots and autonomous robots in complex environments, we also investigate the application of complex robot, and finally design and implement a tool system of such methods.

机器人应用的迅猛发展对人工神经网络等机器人系统设计工具提出了越来越高的要求,但作为第三代神经网络并在机器人领域具有很好前景的Spiking神经网络(SNN)却没有得到广泛应用。本项目围绕这一问题,以SNN的储备池计算模型为切入点,开展从模型研究到典型机器人应用,再到SNN工具箱的应用基础研究。通过分析SNN在机器人领域的优势与挑战,提出"小储备池"的概念,并以此为核心,研究小储备池SNN的神经元模型构建、储备池拓扑结构构建等一系列问题,进而构建具有最优性能和最小规模的计算模型。以机理研究和统计分析为指导,以拓扑优化、参数优化等为手段,以信息墒、精度等为指标,设计多机制综合多目标优化方法,获得适合目标任务的Spiking神经网络。同时,以多任务机器人和复杂环境中的自主机器人以代表,研究其在复杂机器人上的应用,进而设计并实现出该类方法的工具体系。

项目摘要

机器人应用的迅猛发展对人工神经网络等机器人系统设计工具提出了越来越高的要求,但作为第三代神经网络并在机器人领域具有很好前景的Spiking神经网络(SNN)却没有得到广泛应用。基于当前存在的问题,本项目以SNN的储备池计算模型为切入点,开展从模型研究到典型机器人应用,再到SNN工具箱的应用基础研究。具体从小储备池神经网络的神经元模型、储备池网络拓扑、神经网络构建与应用,以及软件设计工具等四大方面进行研究。首先在神经元方面,研究了HH、IF、IZH等经典的脉冲神经网络(SNN)神经元模型,以及IZH+Delay模型、Bursting模型及概念机(Conceptor)模型;其次在在储备池拓扑结构方面,我们研究了小世界多簇、环状结构,以及主动占优结构等多类型神经元混合结构对网络计算新能的影响。并将网络运用到了时间序列预测、图像分类、移动机器人障碍物检测上;最后设计制作了脉冲神经网络仿真实验平台系统,为将Spiking神经网络小储备池计算理论应用到机器人控制决策系统中提供了硬件实现平台。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016
2

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

DOI:
发表时间:2020
3

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

DOI:
发表时间:2018
4

物联网中区块链技术的应用与挑战

物联网中区块链技术的应用与挑战

DOI:10.3969/j.issn.0255-8297.2020.01.002
发表时间:2020
5

多源数据驱动CNN-GRU模型的公交客流量分类预测

多源数据驱动CNN-GRU模型的公交客流量分类预测

DOI:10.19818/j.cnki.1671-1637.2021.05.022
发表时间:2021

薛方正的其他基金

批准号:60905053
批准年份:2009
资助金额:17.00
项目类别:青年科学基金项目

相似国自然基金

1

Spiking神经网络在移动机器人感知及控制中的应用研究

批准号:61175059
批准年份:2011
负责人:王秀青
学科分类:F0601
资助金额:58.00
项目类别:面上项目
2

混沌光储备池并行计算的理论与关键技术研究

批准号:61602099
批准年份:2016
负责人:赵清春
学科分类:F06
资助金额:20.00
项目类别:青年科学基金项目
3

等离子体储备池神经拟态计算研究

批准号:61875169
批准年份:2018
负责人:罗晔
学科分类:F0501
资助金额:61.00
项目类别:面上项目
4

基于高维随机投影的深度储备池计算模型研究

批准号:61872148
批准年份:2018
负责人:马千里
学科分类:F0201
资助金额:63.00
项目类别:面上项目