Most existing crane control methods need to assume that the payload only swings in a plane. In fact, the swing of the payload is not constrained in a plane, but will deviate from the original swing plane to a sphere, that is, the spherical pendulum;Moreover, the acceleration/deceleration motion of the trolley/jib not only causes the front, back, left and right movements of the payload, but also causes the relative movement between the hook and the payload, exhibiting a more complex double-pendulum effect which seriously degrades safety and effectiveness of tower crane systems. This project aims to explore the theoretical problems and technical solutions which will be solved urgently in the field of tower crane control, and carries out the following researches: 1. establishing the dynamic model of the double-pendulum tower crane system with spherical pendulum characteristic, which provides a model for realizing the trolley/jib positioning and the hook/payload swing suppression and elimination; 2. proposing a robust SMC control scheme under strong disturbances, which provides a new method for achieving accurate trolley/jib positioning and rapid payload swing suppression simultaneously; 3. designing a switching control scheme with time-varying system parameters, which provides a new idea for achieving payload swing suppression of the tower crane system; 4. designing an energy coupling control scheme without velocity signals feedback, which provides the improved robustness of the tower crane system. The innovative research of this project will provide sufficient theoretical basis and technical solutions to solve the bottleneck problem which restricts the further development of the crane industry as soon as possible, meanwhile it has a good role in promoting for improving underactuated system control theory.
大多吊车的控制方法需假设负载只在一个平面上摆动,然而负载的摆动并非被约束在某一平面上,而会偏离原来的摆动平面,在一个球面上摆动,即球面摆;此外,台车/悬臂的加/减速运动不仅会引起负载的前后、左右运动,同样使吊钩和负载之间产生相对运动,呈现复杂的两级摆动特性,严重降低系统的安全性和工作效率。本项目旨在探索塔式吊车系统控制领域亟待解决的理论问题和技术方案,开展以下几方面的研究:1.建立带有球面摆特性的二级摆型塔式吊车动力学模型,为实现定位消摆控制提供模型;2.提出强干扰情形下的SMC控制方案,为同时实现台车/悬臂精确定位和消摆控制提供新手段;3.提出系统参数时变的切换控制方案,为实现摆动抑制提供新思路;4.提出无速度信号反馈的耦合控制方案,为提高系统鲁棒性提供好的思路。本项目的创新性研究将会为吊车行业进一步发展提供充分的理论依据和技术方案,同时为完善欠驱动系统控制理论起到良好的促进作用。
大多吊车的控制方法需假设负载只在一个平面上摆动,然而负载的摆动并非被约束在某一平面上,而会偏离原来的摆动平面,在一个球面上摆动,即球面摆;此外,台车/悬臂的加/减速运动不仅会引起负载的前后、左右运动,同样使吊钩和负载之间产生相对运动,呈现复杂的两级摆动特性,严重降低系统的安全性和工作效率。本项目在探索塔式吊车系统控制领域亟待解决的理论问题和技术方案,开展了以下几方面的研究:1.建立了带有球面摆特性的二级摆型塔式吊车动力学模型,为实现定位消摆控制提供模型;2.提出了几种自适应控制方法,为同时实现台车/悬臂精确定位和消摆控制提供新手段;3.提出了强鲁棒控制方法,为提高系统鲁棒性提供好的思路。本项目的创新性研究为吊车行业进一步发展提供充分的理论依据和技术方案,同时为完善欠驱动系统控制理论起到良好的促进作用。在此基础上发表高水平论文16篇,其中sci论文11篇;申请发明专利6项,其中授权3项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
拥堵路网交通流均衡分配模型
基于多模态信息特征融合的犯罪预测算法研究
卫生系统韧性研究概况及其展望
桥式吊车防摆技术
面向安全的双摆效应吊车系统控制研究
双摆效应桥式吊车的滑模控制与无模型自适应控制研究
具有双摆效应的欠驱动旋转起重机消摆控制关键问题研究