The maintenance of intracellular ionic homeostasis is an important mechanism of plants in response to salt stress. To avoid accumulation of toxic Na+ ion in cytosal, the activities of plasma membrane (PM) H+-ATPase and Na+/H+ antiporter are regulated synergistically under salt stress in plant cells, however, the mechanism of co-regulating the two enzymic activities is elusive. Previous study has found that 14-3-3 λ interacts with SOS2 at the phosphorylated Ser-294 and represses SOS2 kinase activity to inhibit SOS1 activity, a Na+/H+ antiporter, when plants grow in the absence of salt stress, but protein for phosphoralation of the SOS2 Ser-294 is undefinable. We find that PKS5 kinase, a negative regulator of PM H+-ATPase, phosphoraltes the SOS2 S-294, and the 14-3-3 λ represses the PKS5 kinase activity and positively regulates the PM H+-ATPase activity under salt stress. These results indicate that 14-3-3 λ is an important regulator in mediating the activities of PM H+-ATPase and Na+/H+ antiporter coordinately under salt stress. In this study, we will analyze the detail function of 14-3-3 λ in co-regulating the activities of PM H+-ATPase and Na+/H+ antiporter, and to clarify the mechanism of plant in response to salt stress.
维持细胞内的离子平衡是植物适应盐胁迫的重要机制。研究发现盐胁迫下质膜H+-ATPase和Na+/H+antiporter活性被协同调控来维持植物细胞离子的稳定,但协同调控机制尚不清楚。已有工作表明正常条件下14-3-3λ与Ser-294被磷酸化的SOS2结合,抑制SOS2活性,负调控SOS (Salt Overly Sensitive)途径,但不清楚磷酸化修饰SOS2 Ser-294的蛋白。我们发现PKS5磷酸化修饰SOS2 Ser-294位点。另外发现14-3-3λ抑制PKS5激酶活性,在盐胁迫下正调控H+-ATPase活性。表明14-3-3λ可能为盐胁迫下调控H+-ATPase和Na+/H+ antiporter活性的偶联因子。因此,本申请将研究14-3-3λ在盐胁迫过程中调控H+-ATPase和Na+/H+ antiporter活性的“桥梁”作用,深入阐明植物适应盐胁迫的分子机制。
盐胁迫是自然界中普遍存在的非生物胁迫,严重影响了植物的生长,降低了农作物的产量。在植物响应盐胁迫的过程中,SOS (Salt-Overly-Sensitive) 信号途径非常保守,并在盐碱胁迫下调节钠离子稳态中起着十分重要的作用。在盐胁迫条件下, SOS3和SCaBP8感知盐胁迫诱导的钙信号, 与蛋白激酶SOS2相互作用并激活其激酶活性,招募其到质膜, 进而激活SOS1 Na+/H+反向转运活性。本实验室以前的研究发现, 在正常条件下, 14-3-3λ/κ (以下简称14-3-3)与Ser294位点磷酸化修饰的SOS2结合并抑制SOS2激酶活性。但是,磷酸化修饰SOS2 Ser294位点的激酶并不清楚; 及14-3-3如何参与对SOS2激酶活性的调节过程也不清楚。. 本项目的研究发现, PKS5磷酸化修饰SOS2 Ser294位点使14-3-3 与SOS2结合并抑制其激酶活性。在正常条件下,PKS5通过磷酸化修饰SOS2 Ser294位点促进14-3-3 与SOS2的结合并抑制其激酶活性。此外,研究中还发现,14-3-3蛋白通过识别并解码盐诱导的钙信号来协同调控质膜SOS1和H+-ATPase活性。14-3-3结合钙离子后,减弱了其与SOS2的相互作用, 并释放了SOS2的激酶活性, 进而正调控SOS1的Na+/H+反向转运活性。同时, 钙离子增强了14-3-3和PKS5的互作, 进而抑制了PKS5活性, 解除了对SOS2和质膜H+-ATPase活性的抑制,为SOS1的Na+/H+反向转运提供了质子梯度。盐诱导的钙信号可被14-3-3和SOS3/SCaBP8蛋白解码, 它们通过选择性激活/抑制下游蛋白激酶SOS2和PKS5来协同调控质膜SOS1Na+/H+反向转运蛋白和H+-ATPase活性,以调节细胞中Na+稳态。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
盐胁迫下珠美海棠Na+/H+ Antiporter基因的分离与功能分析
盐生植物白刺Na+/H+逆向转运蛋白提高植物耐盐性的分子调控机理
调控植物质膜H+-ATPase小分子化合物的鉴定和质膜H+-ATPase功能分析
葡萄新型N末端截短质膜H+-ATPase活性调控及其在抗碱性盐胁迫中的作用