As an important equipment in coal mine excavation work, the working performance of the roadheader can directly affect the drivage efficiency and safety production. In order to realize intelligent driving, this project will analyze the force situation of cutting picks of super-heavy rock roadheader in different operating conditions, cutting conditions, cutting speed, cantilever pendulum speed and feed rate, and reveal the multi-variable, multi-parameter and nonlinear mapping relations between the load distribution of cutting head and the hardness of cutting rock in the case mentioned above. Through exploring the nonlinear, time-varying and multi-couplings transfer characteristic between cantilever vibrations, cutting motor current, hydraulic cylinder pressure and cutting head load, the transfer function between them will be set up. In addition, aimed at relations between the multiple effects of relevant information in the process of cutting, the project will propose an effective method of feature extraction and intelligent processing, and complete the dynamic load intelligent identification, which will reduce the loss of cutting picks, improve production efficiency, provide data basis for automatic control of cutting motor rotation speed and traction motor speed of super-heavy rock roadheader, and give theoretical guidance and technical support for developing intelligent rock roadheader. Finally, by use of the experiment platform, which will be developed to simulate the cutting process of super-heavy rock roadheader in coal mine, the correctness of the above theoretical analysis will be validated.
掘进机作为煤矿掘进作业的重要装备,其工作性能的优劣直接影响到掘进效率和生产安全。本项目以实现智能掘进为目标,分析超重型岩巷掘进机在不同截割工况、截割状态、截割速度、悬臂摆速和进给速度情况下截齿受力情况,揭示掘进机截割装置在上述情况下截割头载荷分布与截割岩石硬度之间的多变量多参数的非线性映射关系,探索掘进机悬臂振动与截割头载荷、截割电动机电流与截割头载荷和液压缸压力与截割头载荷之间的非线性、时变和多耦合传输特性,建立它们之间的传递函数,并针对掘进机截割过程中相关信息之间的多重影响关系,研究有效的特征提取和智能处理方法,实现岩巷掘进机截割动载荷的智能识别,降低截齿损耗,提高生产效率,为超重型岩巷掘进机自动控制截割电机旋转速度、牵引电机行走速度提供数据依据,为研制智能化掘进机提供理论指导和技术支撑。最后利用开发的模拟煤矿井下环境的超重型岩巷掘进机截割过程的试验平台,验证上述理论分析的正确性。
掘进机作为煤矿掘进作业的重要装备,其工作性能的优劣直接影响到掘进效率和生产安全。本项目以实现智能掘进为目标,分析超重型岩巷掘进机在不同截割工况、截割状态、截割速度、悬臂摆速和进给速度情况下截齿受力情况,揭示掘进机截割装置在上述情况下截割头载荷分布与截割岩石硬度之间的多变量多参数的非线性映射关系,探索掘进机悬臂振动与截割头载荷、截割电动机电流与截割头载荷和液压缸压力与截割头载荷之间的非线性、时变和多耦合传输特性,建立它们之间的传递函数,并针对掘进机截割过程中相关信息之间的多重影响关系,研究有效的特征提取和智能处理方法,实现岩巷掘进机截割动载荷的智能识别,降低截齿损耗,提高生产效率,为超重型岩巷掘进机自动控制截割电机旋转速度、牵引电机行走速度提供数据依据,为研制智能化掘进机提供理论指导和技术支撑。最后利用开发的模拟煤矿井下环境的超重型岩巷掘进机截割过程的试验平台,验证上述理论分析的正确性。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
基于空间声学阵列的采煤机煤岩截割模式识别方法研究
煤矿综掘悬臂式掘进机行走、纠偏及截割精准智能测控原理与方法
多因素耦合作用下部分断面掘进机截割巷道表面形貌特征重构与预测研究
采煤机截割部混叠振动信号解耦机理及其截割模式识别方法研究