This project is aimed at the problems that the current technologies cannot totally mineralize persistent organic pollutants in water, and cannot realize simultaneous generation of energy. We put forward the idea of the coupling of photocatalytic oxidation and photocatalytic reduction. And In order to prepare composite materials of carbon materials/organic frameworks/BiOX, carbon materials (graphene and g-C3N4) are combined with MOFs and COFs and BiOX (X=Cl、Br、I). The composite materials would make full use of the advantages of good light absorption and good conductivity of graphene and g-C3N4, good removal efficiency of BiOX and excellent photocatalytic H2 evolution of MOFs and COFs. The composites could exhibit high efficiency and good stability for photocatalytic degradation of persistent organic pollutants and simultaneous photocatalytic H2 evolution from water splitting. The controllable synthetic methods, forming mechanism, the relationship of performance with their structures of the composite materials would be deeply explored. Combined with DFT methods, the migration, transformation and degradation mechanism of organic pollutants, the photocatalytic mechanism of H2 evolution, as well as the degradation- H2 generation synergistic effect in the photocatalytic process are also systemically studied. And the models of photocatalytic degradation of persistent organic pollutants coupled with photocatalytic H2 generation are elementarily established. Significantly, the above research would provide a new idea and theoretical basis for the application of photocatalsis technology in actual wastewater treatment and simultaneous generation of energy.
本项目针对现有技术难以彻底矿化去除难降解有机污染物且无法实现同步能源化等关键问题,提出光催化氧化与光催化还原耦合的思路,将碳材料(石墨烯和g-C3N4)和有机骨架材料(MOFs和COFs)与铋系卤氧化物(BiOX, X=Cl、Br、I)进行复合,制备碳材料/有机骨架材料/BiOX异质结复合材料体系,充分发挥碳材料的良好光吸收和良好导电性,BiOX的良好有机污染物去除能力和有机骨架材料的良好光催化产氢性能,从而构建高效、稳定的光催化降解有机污染物和同步分解水产氢的光催化体系,实现有机废水的矿化去除及同步能源化。系统摸索复合材料的可控合成方法、形成机理及构效关系。结合量化计算手段,深入研究有机污染物迁移转化规律、不同种类有机污染物降解途径和机理、光催化产氢机理及降解-产氢协同机理,初步建立难降解有机污染物的矿化去除和同步能源化模型,为光催化技术处理实际有机废水及同步能源化提供新思路和理论基础。
本项目针对现有技术难以彻底矿化去除难降解有机污染物且无法实现同步能源化等关键问题,提出光催化氧化与光催化还原耦合的思路。将碳材料g-C3N4作为前驱体,合成了含有不同官能团、金属掺杂的碳材料,同时与碳量子点和CdS量子点结合形成新型的复合光催化剂。合理利用了碳材料的良好光吸收和良好导电性,构建了高效、稳定的光催化降解有机污染物和同步分解水产氢的光催化体系,实现有机废水的矿化去除及同步能源化。系统摸索复合材料的可控合成方法、形成机理及构效关系。结合量化计算手段,深入研究有机污染物迁移转化规律、不同种类有机污染物降解途径和机理、光催化产氢机理及降解-产氢协同机理,初步建立难降解有机污染物的矿化去除和同步能源化模型,为光催化技术处理实际有机废水及同步能源化提供新思路和理论基础。依托本项目,培养硕士研究生6人,其中省优秀硕士论文获得者2人、在读硕士9人;发表SCI论文15篇,申请发明专利5项,授权发明专利2项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
动物响应亚磁场的生化和分子机制
山核桃赤霉素氧化酶基因CcGA3ox 的克隆和功能分析
难降解的有毒有机污染物多相光催化分解的新型催化剂和机理研究
光催化分解水产氢和产氧机理的原位时间分辨光谱研究
过氧化氢光催化降解有毒难降解有机污染物研究
有机污染物光催化降解研究