The design of ultrathin membrane with uniform nanosize pores to achieve high-selectivity and high-flux separation is rather important and the development direction in the field of membrane materials for separation, but is still a tough task and a big challenge. Biomolecules with specific homogenous pore structures, such as membrane proteins, provide highly selective and intelligent mass transport for life systems. Different from the conventional preparation method mainly based on physical etching and self-assembly of block copolymers, we propose in this project to make use of biomacromolecules with specific pore structure, for example tobacco mosaic virus (TMV), as membrane-forming units to construct ultrathin homoporous membrane. By designing a bridge group on the protein unit, anisotropic two-dimensional cross-linking reaction between the two units could be induced and protein-based ultrathin homoporous membrane with large membrane area could be constructed. Furthermore, through the selection and design of different protein units, the pore size, pore structure and membrane thickness of the correspondingly membranes could be accurately regulated at nanometer scale to achieve high precision and high throughput separation, in particular, for the separation of the objects in 1-10 nm scale. The nano-separation membranes based on two-dimensional assembly of biomacromolecules provide a new method and strategy for the controllable preparation of ultrathin homoporous membranes, and expand the types of ultrathin separation membranes. It provides a theoretical and experimental basis for exploring and developing the specific separation and application of homoporous membranes.
设计具有均一纳米孔径的超薄分离膜实现高精度、高通量分离是分离膜材料研究领域的重要发展方向,同时也面临巨大挑战。具有特定均一孔道结构的生物大分子如膜蛋白为生命体系提供高选择性和智能响应的物质输运,是一种理想的超薄均孔膜构筑基元。不同于常规的基于物理刻蚀和嵌段共聚物自组装的均孔膜制备方法,本项目我们提出以利用具有特定孔道结构的生物大分子,如烟草花叶病毒等,为基元构筑超薄均孔膜,通过在蛋白基元上设计修饰桥联基团、诱导基元间发生各向异性的二维交联反应,构筑大面积蛋白质超薄均孔膜,进一步通过不同蛋白基元的选择和设计,在纳米尺度精准调控蛋白质膜的孔径、孔结构和膜厚,实现高精度、高通量分离,特别是1-10纳米尺度范围的高选择性分离。基于生物大分子二维组装构筑的纳米分离膜为超薄均孔膜的可控制备提供了新的方法和策略,扩展了超薄分离膜的种类,为探索和开发均孔膜的特异性分离应用提供一定的理论和实验基础。
设计具有均一纳米孔径的超薄分离膜实现高精度、高通量分离是分离膜材料研究领域的重.要发展方向,同时也面临巨大挑战。具有特定均一孔道结构的生物大分子如膜蛋白为生命体系.提供高选择性和智能响应的物质输运,是一种理想的超薄均孔膜构筑基元。不同于常规的基于.物理刻蚀和嵌段共聚物自组装的均孔膜制备方法,本项目我们提出以利用具有特定孔道结构的.生物大分子,如烟草花叶病毒等,为基元构筑超薄均孔膜,通过在蛋白基元上设计修饰桥联基.团、诱导基元间发生各向异性的二维交联反应,构筑大面积蛋白质超薄均孔膜,进一步通过不.同蛋白基元的选择和设计,在纳米尺度精准调控蛋白质膜的孔径、孔结构和膜厚,实现高精度.、高通量分离,特别是1-10纳米尺度范围的高选择性分离。基于生物大分子二维组装构筑的纳.米分离膜为超薄均孔膜的可控制备提供了新的方法和策略,扩展了超薄分离膜的种类,为探索.和开发均孔膜的特异性分离应用提供一定的理论和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
外泌体在胃癌转移中作用机制的研究进展
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
一种基于多层设计空间缩减策略的近似高维优化方法
猪链球菌生物被膜形成的耐药机制
基于“自由孔隙”的均孔膜纳米分离通道构建及其成孔机制
超薄高性能沸石分子筛纳米片分离膜的构筑与性能研究
超薄石墨烯基多孔分离膜的构筑及其分离性能研究
基于超薄二维材料纳米孔DNA测序的理论设计与研究