Brain-Machine interface (BMI) has been widely used in medical and scientific research areas, which makes ultra low-power and miniaturized implantable or wearable multi-channel EEG recording device very important. However, the analog-front end (AFE) chip is one of the main circuits that can affect the performance of the entire multi-channel EEG acquisition system.. In this program, under the direction of the AFE systematic models, the ADC switching-energy, matching, and noise models proposed by the applicant previously, the modeling research and architecture optimization of the multi-channel EEG recording AFE are performed with respect to the chip area and power dissipation. A novel low-noise amplifier (LNA) structure without input DC-blocking capacitance is proposed to reduce the chip area and a low-power design technique with the combination of energy-efficient switching scheme and signal pre-detection method is proposed for the successive-approximation-register (SAR) ADC to reduce the power consumption of the AFE chip. From the design aspect of the entire system-on-chip (SoC), the complexity of the power management block is dramatically reduced by a small-area full-MOS reference generation circuit combined with a multi-output low-dropout regulator (LDO). For further power reduction, a low-leakage design technique in nano-scale CMOS process is proposed for the multi-channel EEG recording AFE chip. Moreover, to make the AFE chip more applicable in implantable devices, data packeting circuit and internal clock self-generation circuit are designed for reducing the number of input/output (I/O) PADs. Finally, an ultra low-power and small-area 64-channel EEG recording AFE chip are realized in a 65 nm CMOS process. The theoretical research and design techniques in this program are very important for multi-channel AFE design and optimization, which can facilitate the development of BMI systems.
脑-机接口已广泛应用于医疗及科研等领域,其中植入式或穿戴式多通道脑电信号(EEG)采集器件的低功耗小型化设计至关重要,而模拟前端(AFE)芯片是影响整个EEG采集系统性能的关键电路。本项目以申请人前期获得的AFE系统模型、ADC能耗、匹配及噪声模型为指导,针对多通道EEG采集AFE的功耗和面积进行建模研究和结构优化,提出一种无输入电容的小型化LNA电路结构以及结合低功耗电容阵列切换和信号预检测的SAR ADC设计技术以减小AFE功耗和面积。此外,提出完全基于MOS器件的小型化基准电路并采取多输出结构LDO简化电源电路复杂度,提出纳米级CMOS低漏电设计技术进一步减小功耗,并设计数据打包以及内部时钟产生电路以减少芯片的端口数目,提高其应用的灵活性,最后基于65nm CMOS完成64通道EEG采集AFE芯片的超低功耗小型化设计。本项目能够指导多通道AFE设计优化,提高国内脑-机接口设计水平。
高性能模拟前端芯片在工业、国防、生物电子等领域都具有广泛应用,其低功耗小型化电路技术是限制其植入式、穿戴式、便携式应用的关键因素。此外,脑-机接口在生物医疗和生命科学研究方面都具有重要作用,而模拟前端(AFE)芯片是影响整个 EEG 采集系统性能的关键电路。本项目主要研究低功耗小型化模拟前端电路技术、模数转换器的功耗、面积、精度协同设计技术、高效无线数据发射电路技术以及低压低功耗电源管理电路技术。重要结果包括:提出多种适用于逐次逼近ADC的高能效小型化电容阵列及其逻辑控制方式,并在此基础上设计验证了多款低功耗小型化ADC芯片;采用反馈量衰减技术以及T型电容网络设计技术,有效减小了模拟前端LNA电路的面积;提出了用于模拟-时间-数字转换的新型二进制减法电路,并采用非线性校准技术设计实现了一种基于VCO的ADC,面积仅为类似指标逐次逼近ADC的1/5;提出一种具有快速响应的低压差线性稳压器,输出过冲和下冲的电压幅值能够分别下降35.3%和78.1%,响应速度提高了7.41倍;提出一种具有输出幅度增强的无线数据发射电路技术,输出脉冲幅度较传统UWB发射电路提高了2倍;基于CMOS工艺设计实现了多通道脑电信号采集模拟前端芯片,芯片面积和功耗满足预期指标要求。本项目所研究的内容和取得的关键技术能够指导多通道AFE设计优化,提高国内低功耗集成电路设计水平。
{{i.achievement_title}}
数据更新时间:2023-05-31
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
基于SSVEP 直接脑控机器人方向和速度研究
基于多模态信息特征融合的犯罪预测算法研究
钢筋混凝土带翼缘剪力墙破坏机理研究
双吸离心泵压力脉动特性数值模拟及试验研究
低功耗紧凑型多通道肌电信号探测模拟前端芯片设计及低失真探测技术研究
多通道关联脑电信号复合处理与硅芯片集成技术研究
基于虚拟高阶delta-sigma ADC的植入式脑电信号采集前端电路研究
用于脑电信号获取系统的多通道有源电极专用集成芯片的研究