The ultraviolet (UV) photodetector has a widely application in military and civil fields including missile warning, environmental studies, chemical/biological analysis and so on. To ensure the high sensivity and high signal/noise in the weak signal processing of the detectors, the detector which could have a strong self-amplification function is an active demand of the UV detections. Avalanche photodetector (APD) is an efficient path to realize the self-amplification of weak light in the various structures of UV detectors. Nowadays, the ultraviolet avalanche photodetector was mainly fabricated by the AlGaN based photodetector which usually using a PiN film structure, while, the epitaxial growth and doping technology of the film is complex and expensive. It still exist the problem of a high dislocation density in the interlamination and the lack of efficient and stablization P-type doping. Focusing on those problems, the proposed project would fabricate the UV APD using a novel heterojunction device method based on the core-shell microwire with highly crystallized which synthesize in one-step CVD mothod. The depletion region produced by the II-type energy band structures between different materials would avoid the problems of the P-type doping. And then, the relation between the avalanche gain, breakdown voltage, and the noise of the device with the electrical parameter and energy band structure of different layers would be analysed by studying the transport and amplification of photo-generation carries in different layers and interface. This will provide a new approach to realized the lowcost and high gain APD in the theory and practice.
随着紫外探测器在导弹预警、环境监测以及化学/生物检测等诸多领域的广泛应用,为保证探测系统在后续信号处理时具有较高的信噪比和灵敏度,具有较强的自放大能力的探测器成为紫外探测领域的迫切需要。在众多结构的紫外探测器中,雪崩光电二极管(APD)是实现弱光探测自放大的一种有效途径。目前紫外波段的雪崩探测器主要为AlGaN等薄膜材料PIN结构探测器,其需要昂贵的薄膜外延生长设备和复杂的掺杂工艺,还依然面临着层间缺陷密度高,高效稳定的P型掺杂困难等国际难题。针对上述难题,本项目拟采用一步生长法获得的高结晶质量的核壳结构微米线构筑新型异质结APD紫外探测器,该器件采用II型能带结构来构造空间势垒区,避开了P型掺杂的难题。进而,通过研究光生载流子在APD各层及界面的倍增及输运机制,阐明雪崩增益、击穿电压、器件噪声等与各层电学参数、能带结构的关系,为低成本、高增益APD的制备提供更加完善的理论依据和实现途径。
该项目紧紧围绕课题研究的总目标,在新型核壳结构微米线异质结的控制合成、多种微纳结构的可控生长、光电探测器的构筑及其内在物理机理研究上,开展了较为深入和系统的研究工作,如1、利用一步法生长出具有良好的结晶质量的ZnO-Ga2O3核壳结构微米线,其生长机理是利用ZnO和Ga2O3的生长阈值温度不同,基于该微米线制备异质结日盲探测器在0V下251 nm时的响应度高达9.7 mA/W,该器件的响应截止边在267 nm,且具有6.9×102的日盲可见异质比,响应速度在μs量级。进一步揭示了该器件自供能的原因是由于当器件受到日盲波段的辐射之后,产生大量的光生电子空穴从而形成光生电动势。2、采用原子层沉积的方法,在电纺丝SnO2纳米纤维阵列上包覆ZnO,构筑了半包覆结构的SnO2@ZnO光电器件。其在可见光区域是透明的,在紫外响应显著,响应度的最高峰出现在250 nm处,约为100 A W-1(偏压为5 V)。优于同样测试条件下纯SnO2器件的性能,分析揭示其是因为复合结构形成的II型能带,有利于光生载流子的分离。通过理论分析、计算模拟和实验对比,揭示了器件在不同的光入射方向的光响应行为,以及具有不同的响应谱的原因:正是由于半包覆结构,器件在背入射时,具有更高的紫外选择性。3、以SnO2微米线为基础,通过化学浴沉积方法在其表面沉积一层p型透明导电纳米颗粒膜(ZnS)0.35:(CuS)0.65(简写为CuZnS),并构筑了基于单根SnO2/CuZnS核壳结构的微米线的光伏型紫外探测器。得益于p型CuZnS的透明导电性与表面修饰作用,以及核壳的特殊结构形式,该器件显示优异的光电特性。在该基金的支持下,以项目申请人为通讯作者,已经在材料类著名杂志上发表论文20 篇,申请中国专利2项。受邀在国内外学术会议上做邀请报告2次,与国内外多个课题组开展合作交流研究。该国家基金参与培养2位博士后,2位博士生生和3位硕士生。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
粗颗粒土的静止土压力系数非线性分析与计算方法
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
感应不均匀介质的琼斯矩阵
基于氧化物纳米线阵列的异质结紫外探测器的研究
核壳结构异质结的氧化物纳米线阵列的制备与光电化学制氢研究
新型核壳结构量子点共振能量转移型传感器的设计及其内在物理机理研究
ZnO/Ga2O3核壳微米线的制备及高性能日盲紫外探测器的研制