The chemical industry developed over the past century using petroleum as its primary feedstock. However, with exponential growth in the demand for fossil raw materials today, industry revolution became definitely relied on fossil resources to produce the fuels, chemicals and polymers required for modern life. And we humankind have to face the most critical challenges ever of fossil resource depletion and proliferation of global climate changing emissions, pollutant and solid wastes and find ways out. While polymer industry is recognized as huge energy and raw material consumption and discharges enormous amounts of wastes and effluents, polymer from renewable resources, such as biomass, can significantly cut down greenhouse gas emissions and save fossil energy use today as compared with conventional petrochemical-based polymers. Therefore, the development of biomass feedstock provides a feasible solution. Biomass is a viable alternative, providing many of the same chemical building blocks-plus others that petrochemicals cannot, which are required to fabricate durable and high-performance materials. Based on preliminary studies, monomers derived from lagre-scale biomass such as sebacic acid, itaconic acid, 1,10-diaminodecane, 1,4-diaminobutane were selected to generate the crosslinkable 100% new bio-based polyamides through melting copolycondensation. Then 100% bio-based polyamide fibers with high crosslink density, excellent mechanical properties and high environmental stability were prepared through melting-spinning, high drawing and irradiation crosslink process. Through the study of macromolecular design, polymerization process and conditions, monomer type and ratio, melting spinning, high drawing, and irradiation crosslinking, the effects of those factors on the structures and properties of bio-based polyamide fibers were investigated in detail. The results can provide important references for the development of a new generation of bio-based fiber materials.
随着化石资源的逐渐枯竭以及减排温室气体保护环境的需要,为实现人类可持续发展的目标,从可再生资源特别是生物质生产高附加值的化工产品成为许多国家的重要发展战略和科学研究的热点领域。基于前期研究工作,本项目选用生物基癸二酸、癸二胺、衣康酸、丁二酸、丁二胺等可大宗工业化生产的单体,通过熔融缩聚合成新型的100%生物基可交联聚酰胺,然后经纺丝-牵伸-交联过程,制备具有高交联密度、优异的综合力学性能、高环境稳定性的100%生物基聚酰胺纤维。通过研究大分子设计、聚合反应过程和条件、单体种类和配比、熔融纺丝-高倍牵伸工艺条件、辐照交联等对新型生物基聚酰胺及其纤维材料的结构、加工性能、物理机械性能、环境稳定性的影响,旨在为从柔性链聚酰胺制备高性能纤维探索新的原理和途径,为新一代生物基纤维材料的发展提供依据。
随着化石资源的枯竭和化石原料利用率低下或是浪费造成的相关环境问题逐渐增多,探索生产绿色耐用、高效能并且来自可再生资源的聚合物材料是非常重要和急需解决的问题。在过去的几十年里,许多生物基聚合物出现并成功替代石油基聚合物。作为一种综合性能优异的工程材料,聚酰胺在国民生产生活中应用广泛,但大多通过石化资源合成得到。利用四种大宗的生物质单体(衣康酸,癸二酸,丁二胺,癸二胺),我们成功合成了一系列具有多性能的全生物基聚酰胺BDIS材料。随着衣康酸用量的增加,BDIS材料由结晶型高聚物向无定型高聚物转变,BDIS材料样品也从不透明逐渐向透明转变。BDIS材料具备优异的力学性能和良好的加工性能。熔融纺丝后BDIS (IA-50%)纤维强度可以达到535MPa,与商业化产品PA6纤维的强度相当接近。BDIS (IA-100%)材料也是透明的无定型材料,可以被乙醇溶解,使其可以应用在粘合剂领域。从细胞毒性试验中所有BDIS材料的RGR响应评级都在0级到1级,证明该材料毒性低,有作为新型生物材料进行下一步探索的价值。BDIS的吸水率随着IA含量的增加而升高,特别是IA含量达到80 %的BDIS材料处于完全无定型态。吸水30天后该材料的吸水率接近22%,高于传统聚酰胺材料的吸水率。辐照交联可提高BDIS材料的弹性模量、断裂伸长率以及断裂强度。光氧化后BDIS(IA-100%)材料的透光率逐渐降低,将该材料放置在土壤中降解6个月后基本消失不见证明有较好的可降解性。通过静电纺丝制备了甲硝唑含量5~40wt.%、以PCL/BDIS为基体的载药膜,MNA成功载入纤维中并且性状稳定在放置过程中无明显变化。采用原位反应法并通过熔融纺丝制备了Eu(TTA)2Phen(AA)/ BDIS(IA-100%) 复合纤维。稀土配合物在BDIS 基体中分散性良好。γ射线辐照前后的稀土配合物与大分子链间产生了作用力,但由于辐照过程中降解的作用,纤维的力学性能表现为降低。辐照后纤维的荧光强度有了明显的提升。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
生物基聚酰胺56纤维聚集态结构与性能研究
新型可溶性高性能聚芳醚酮的设计、合成及其电纺纳米纤维的制备研究
超高性能纤维-水泥基复合材料的制备及其界面效应
新型靶向双功能聚酰胺-胺树枝状抗菌分子的设计合成及其抗菌作用研究