As a future display technology, 3D display has been rapidly developed in all regions of the world. It makes people realize their dreams for the reproduction of the true world with a more interesting and real viewing experience. The stereoscopic displays have been developed for a long time and have been in commercialization recently. But for the autostereoscopic displays which need no aid of the auxiliary devices, there are still some issues of optical property, such as low resolution, narrow 3D viewing angle, relatively high crosstalk. In our application, the blue phase liquid crystal (LC), a kind of macro isotropic LC material, will be applied in dynamic LC lens due to its microsecond level response time. As the refractive index profile of the LC lens is sequentially controlled by electric field, the images of different view point can be sequentially projected into the different spatial positions to make the 3D viewing zone which is same as the 3D viewing zone made by conventional lenticular autostereoscopic displays. With the above technology, the display with dynamic LC lens can achieve not only the high resolution which is same as that of 2D display, but also wide viewing angle in 3D viewing zone. In addition it can degrade the crosstalk to improve the 3D performance by eliminating aberration of lens. This project will investigate the key technologies of the high resolution multi-view autostereoscopic display with wide viewing angle and perfect 3D performance. The fast response phase modulate device with blue phase LC material, and blue phase LC lens and LC/polymer lens with optimized Fresnel type refractive index distribution are investigated to remove the lens aberration, get the wide 3D viewing angle and high resolution. The integrated collimated light source system with micro structure is researched to achieve the narrow divergence angle, and the dynamic and static crosstalk model made by the sequential refractive index distribution of LC lens is studied to degrade the crosstalk and improve the 3D optical property.
三维显示承载着人们对再现客观世界的向往,是世界各国大力发展的新型显示。虽然目前眼镜式三维显示已较为成熟,但是不借助辅助物的裸眼三维显示仍然存在分辨率低,视野角较窄和三维显示特性较差等的问题。此申请将蓝相液晶技术应用于动态液晶微透镜,时序控制液晶透镜的折射率分布,投射不同视点图像至相应观察点的空间位置,形成广视角高分辨率裸眼三维显示。本项目将研究其中的关键科学问题,包括研究快速响应蓝相液晶材料的器件特性与动作机理,优化菲涅尔式折射率分布的蓝相液晶透镜与液晶聚合物透镜的结构模型,通过动态调制液晶透镜和时序二维显示,实现二维和三维影像的等分辨率转换,获取广阔的三维视野角,消除相差引起的串扰;并结合研究影响系统静态串扰特性的平面准直光源系统中微结构的作用,以及探索液晶透镜动态折射率分布对三维显示动静态综合串扰特性的影响因素,消除相邻像素光路引起的串扰,降低系统综合串扰,实现优质三维光特性。
本项目研究基于时序二维显示和动态液晶透镜的高分辨率三维显示技术。主要开发快速响应蓝相液晶材料,快速液晶透镜器件与准直面光源器件,并研究动态扫描三维光学系统的特性,实现优质三维显示特性的高分辨率三维显示器件。.通过对快速响应液晶材料-蓝相液晶的研究,已经实现了基于活性稀释体系掺杂与导电聚合物掺杂的聚合物稳定蓝相液晶,首次实现了蓝相液晶驱动性能与响应特性的同步提升,科尔常数提升55%,响应时间减少23%;并在此材料基础上,实现了高驱动性能快速响应的蓝相液晶透镜,科尔常数可以提升到12.3 nm/V2,响应速度520μs。.同时针对扫描透镜式高分辨率三维显示对于光源的特殊需求,本项目提出了一种新型准直背光设计理念,采用高准直特性的点光源作为设计基础,通过微棱镜结构将其扩展成线光源,进一步再将其扩展成面光源并维持其准直特性不变。设计了双楔形与平面梯形两种集成式高指向性背光结构。并以此依据制备了高准直度(FWHM:±4°)、高光效(1.47倍提升)、低功耗(5%的能耗)及高均匀度(>90%)的背光器件。此器件是到目前为止最具集成度和准直特性的面准直光源,此项研究对于降低扫描液晶透镜式三维显示的串扰,提升三维显示光特性有着极其重要的意义。.在快速扫描蓝相液晶透镜与准直面光源的基础上,构建了基于扫描透镜的动态与静态综合串扰模型,建立了时序单像素液晶透镜新理论;通过快速响应蓝相液晶材料实现时序扫描液晶透镜,结合新型微结构准直面光源,实现了优质三维特性的高分辨率分辨率三维显示。.本项目共计发表SCI期刊论文19篇;发表国际会议论文19篇,其中邀请报告7篇;申请中国发明专利8项,其中授权3项;共培养博士生4名,硕士生10名。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
内点最大化与冗余点控制的小型无人机遥感图像配准
感应不均匀介质的琼斯矩阵
面向裸眼三维显示的纳米结构指向性背光的机理研究
基于电子全息的裸眼三维图像实时显示研究
面向裸眼三维显示的光场数据分析与高效绘制技术
裸视光栅三维立体显示的理论与关键技术