The 3rd Generation AHSS for autos, firstly presented as a concept in USA in 1996, has received increasing attention globally in the circle of steel research scientists. Most of them now agree that austenite-plus-ferrite dual phase TRIP steels that usually contain 5-10%Mn are the most promising choice for the 3rd Generation AHSS. Our previous works have led to prototype steel with an excellent combination of the tensile strength (1-1.5GP) and elongation (30-45%), which results from the presence of 20-40% retained austenite in the steel. The key process to achieve such outstanding property is to heat the steel with the original martensitic microstructure to the intercritical region, in which part of the martensite will be reversely transformed to the austenite. However, this generally requires quite a long intercritical annealing so that batch annealing, instead of the continuous annealing, has to be employed in the present industrial production of this steel, although the latter is a more modern production process for higher efficiency and better quality control..This proposal is targeting the optimization of the microstructural preparation for the maximum formation of austenite during the intercritical annealing (IA) so that more austenite can be retained after a short continuous annealing in industry. Various microstructures are produced by the new designed heating paths or pre-heat treatments before the IA and then their influences on the reverse austenitization kinetics were studied both experimentally and theoretically. Microstructural evolutions during both heating and the intercritical annealing are followed and characterized by the modern technique, such as SEM, HR-TEM and 3DAP. Based on the.results, we may expect to propose a novel process of pre-treatment of the medium Mn steel before the reverse transformation so that the fraction of retained after IA can be maximized. Moreover, such a process can be easily applied in the steel industry and combined with the continuous annealing process line.
各国科学家经大量研究,多认为含5-10%Mn的中Mn奥氏体铁素体双相TRIP钢是最有前景的第三代先进汽车用钢之一。申请人团队前期工作已试制出性能出色的中Mn含量原型钢(抗拉强度在0.9-1.5GPa,延伸率在30-45%),但该钢的亚临界退火时间较长,不能通过企业广泛采用的连续退火生产线生产。本项目通过研究中Mn钢的起始组织状态对退火过程奥氏体逆相变影响的内在科学规律,来寻找在短时退火时加快奥氏体形成速度的途径;拟在中Mn钢退火前通过特定的预处理工艺,来优化奥氏体逆相变前的组织准备,使得短时连续退火后得到的奥氏体数量明显增多,以保证优秀的拉伸性能。本项目的研究内容包括利用各种先进实验技术深入细致表征中Mn钢退火过程中的组织演变,以及退火过程中奥氏体逆相变动力学、溶质元素配分和残余奥氏体稳定性、退火组织和拉伸性能之间的关系等。预研工作的初步结果也证明了项目的研究思路是可行的。
早期开发的第三代汽车用钢中锰原型钢5Mn钢,虽然具有高强度和高塑性,但但需要长时间临界退火处理,以便让Mn元素充分配分进入奥氏体相,才能通过TRIP效应获得显著加工硬化。但这一工艺无法与目前广泛采用的短时连续退火工业生产线相适应。因此,需要寻找缩短中锰钢临界退火时间、同时还能保持其优良力学性能的新退火工艺路线。.为此,本项目针对上述目标进行了深入研究,取得如下成果:.(1)研究了中锰临界退火前的起始组织,包括冷轧、热轧、温轧等典型工艺组织以及马氏体、含有不同尺寸和成分碳化物的回火马氏体等组织,对临界退火过程中奥氏体形核和长大的影响,以及对最终中锰钢组织和力学性能的影响。研究结果表明,通过所发明的两步法退火工艺,可缩短退火时间且同时改善力学性能,达到了预期目标。通过提高加热速率至100-500oC/s来显著抑制再结晶,研究了再结晶与逆相变重叠程度对奥氏体逆相变、最终组织和力学性能的影响,试验结果表明中锰钢甚至只需经过数秒的快速热处理,就能够实现比长时间退火工艺更为优越的力学性能。.(2)科学规律的创新。上述两步法退火工艺的关键是工艺中两段工序精确设计所依据的组织继承原理。我们研究发现了这一科学机理,即在前一工序中通过形成尺寸、成分合适的碳化物可作为下一工序的奥氏体钢形核核心,可加速奥氏体形成和控制溶质元素配分,进而短时间就可以形成一定分数和稳定性足够的奥氏体,最终实现力学性能的改善。本研究进而开发出基于扩散型相变的物理本征模型,可用于指导该两步法退火工艺的设计,并可很好地解释了组织和力学性能的实验结果,全面阐释了该科学规律。.(3)研发了各类不同成分的中锰钢,其中多数中锰钢钢种无需经过长时间临界退火就能获得突出的力学性能,其性能水平远高于早期的5Mn钢,多数位于第三代汽车用钢性能区间,部分甚至达到第二代高锰钢性能,如1200 MPa 抗拉强度70%延伸率;发明的某些中锰钢具有超高强度和高塑性,如1600MPa抗拉强度和50%延伸率;2200MPa抗拉强度16%延伸率,部分相关成果已经发表在如Science等著名期刊上,也获得多项国家发明专利。.(4)除了上述工艺对中锰钢组织和力学性能的影响的研究之外,我们还研究了中锰钢服役应用中的具体问题,包括变形时的局部应变集中如吕德斯带和PLC带形成的.机理及其与组织和成分、工艺的影响关系等,形成了一些新的知识和结论。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
自流式空气除尘系统管道中过饱和度分布特征
动物响应亚磁场的生化和分子机制
一种加权距离连续K中心选址问题求解方法
汽车用第三代中锰钢电阻点焊组织调控机理及其熔核形核理论研究
汽车用高强高塑性中锰钢延迟开裂的机理及规律研究
第三代高强钢中锰钢在复杂冲压工艺下的塑性行为研究
汽车用低密度TRIP钢中残余奥氏体机械稳定性研究