The optical system performance is directly influenced by the optical dielectric film quality. The detection and control of the optical dielectric film roughness and defect particles is one of the most important research points about the preparation and check and as well as performance of the optical film and the nanometer/subnanometer structural material. Extracting effectively the optical dielectric film roughness and defect character and diagnosing and controlling the optical dielectric film character have important academic significance and realistic value to improve the optical system efficiency and increase the nanometer structure material performance.Based on the electromagnetic theory of the interaction between the light and the material, the optical character of the micro-rough dielectric film and the composite light scattering character between the optical dielectric film and multi-body defect particles are studied. The influence of the defect character parameters, i.e. the size and the shape and the azimuth of the defect, to the composite light scattering between the optical dielectric film and defect particles is researched and the contributions of the defect and the micro-rough dielectric film, respectively, to the total scattered field and the coupled field are analyzed. Measuring experimentally the surface roughness and the refractive index and the extinction coefficient as well as the scattered intensity, combing with the theory and applying the Support Vector Machine Optimization Theory (SVMOT), the major characteristics of the defect are extracted. The work done in the project will provide theoretical basis and technological support for the optical film and the semiconducting material preparation and the nondestructive examination as well as the optical performance design of the nanometer structure.
光学介质薄膜的质量直接影响着光学系统的整体性能。介质薄膜粗糙度和缺陷的检测与控制是光学薄膜及纳米/亚纳米结构材料制备、检测与性能等研究方向的重点研究内容之一。有效的提取光学介质薄膜粗糙度及缺陷特征,诊断、控制光学介质薄膜微观形貌结构,对提高光学系统的效率或纳米结构功能材料的性能具有重要的学术意义和应用价值。本项目基于光与材料相互作用的电磁理论,研究微粗糙膜系光学特性,以及介质薄膜与多体缺陷的复合光散射特性;研究膜系的物性参数及缺陷尺寸、形态、方位等特征参数对光学介质膜层和缺陷复合光散射空间分布、偏振特性的影响规律,分析缺陷和微粗糙介质薄膜的耦合场及各自对总场的贡献;通过表面粗糙度、折射率、消光系数以及散射光强度等实验测量,理论模型与实验结合,应用支持向量机优化理论提取缺陷的主要特征。为光学薄膜、半导体材料的制备、无损检测、微纳米结构的光学性能设计等领域提供理论依据和技术支撑。
有效提取光学介质薄膜粗糙度及缺陷特征,诊断、控制光学介质薄膜微观形貌结构对提高光学系统的效率或纳米结构功能材料的性能具有重要学术意义和应用价值。本项目通过对光学薄膜的表面及亚表面散射特性的分析获取微观形貌特征信息,有效评定光学系统表面的微观质量,提高薄膜的镀膜技术,达到改进光学薄膜的沉积工艺等目的。.基于复杂粒子体系对激光波束散射的解析分析方法与数值方法,针对含缺陷光学介质薄膜的光散射特性,分析多方位各向同性/手征/各向异性粒子,无界或有界多体结构等不同粒子系散射幅度、相位、偏振和辐射力、扭矩、结合力等共性和个性激光散射特性与影响规律。基于微面元理论,建立偏振双向反射分布函数模型,推导出散射光的斯托克斯矢量。数值模拟分析基底与涂层在相关和非相关模型下,不同涂层对偏振双向反射分布函数的影响。对于基片与缺陷粒子的半空间问题,利用时域有限差分方法的广义完全匹配吸收层算法,结合三波技术引入激励源给出相应连接边界条件并将互易性定理应用到近远场外推中使过程简化。数值计算基片与镶嵌及掩埋缺陷粒子的散射特性,总结多因素对散射场的影响规律,分析缺陷和微粗糙介质薄膜的耦合场及各自贡献。基于FDTD/MRTD混合方法研究微粗糙光学表面与多体缺陷粒子的复合光散射问题。建立微粗糙光学表面与掩埋多体粒子复合散射模型,利用DB2小波尺度函数的移位内插原理,将计算区域分别划分为MRTD和FDTD方法区域,推导出复合散射场,总结多物性特征对微粗糙光学表面与掩埋多体粒子复合散射场的影响规律。.依托本项目发表相关论文44篇,其中SCI收录9篇;EI收录共29篇;期刊论文24篇,国际会议论文19篇。获陕西高等学校科学技术奖一等奖1项,西安市科学技术进步奖三等奖1项,西安工业大学科学技术奖二等奖1项,西安工业大学青年英才1项,西安工业大学优秀青年教师基金1项。发明专利2项,培养博士后进站1名;博士研究生并获得学位1名,在读博士生2名,硕士研究生6名,已获得学位4名。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
具有强散射微粒的增益介质光学特性的研究
超短脉冲电磁光束经介质散射的统计光学特性研究
光波经介质或粒子系统散射的统计光学特性研究
金属多硫配合物复合薄膜的三阶非线性光学特性及机理研究