The method for the multidisciplinary design optimization does not consider the effect of assembly dimensions on the shape and the impeller performance, the optimized design of which is easy to be diverged by the assembly deformation and greatly restricts the efficiency of the assembly dimensional control and the effect of the performance in service. This project takes the axial prime and centrifugal working impellers as objects and focuses on the mechanism in the general problem that assembly dimensions deviate the structural shape and change the performance of an impeller. The Boolean algebraic modeling for an assembly is firstly studied based on the assembly relation for the parts in an impeller targeting to express the path for the accumulations of assembly dimensions concisely and properly. Then the structural shape is changed by the assembly deformation based on the accumulated mechanism of the deformations induced by the stress of the connectors and the actual locating errors between parts. And finally the analysis method for the service performance in multi-fields is proposed based on the transfer approach for the parameters of assembly and design from the computational structural model to the fluid model for impellers. The design of experiment and the iterative optimization algorithm that integrate the above analysis method are used to reveal the influence of the structural and assembly parameters to the fluid performance of the impeller. This project shall give the multidisciplinary simulation technology of impellers the ability in dealing with the actual assembly dimensions, and promotes the new progress of the design and manufacturing for the impellers.
多学科设计优化方法一直没有考虑装配变形对叶轮形状和热力特性的影响,其优化结果往往由于装配变形而呈现出较大的分散性,极大地制约了叶轮的装配变形控制效率和在装备中的工作性能。项目以轴流式原动机和离心式工作机叶轮为对象,致力于研究装配变形引起叶轮特性偏离设计值的问题。项目拟通过分析零件在装配中的配合关系,构造叶轮装配关系的逻辑代数,以简洁和准确地表达装配变形的累积路径;研究零件接触曲面上的定位小位移、过定位小变形和连接应力变形的累积机制,将装配变形直接作用于叶轮的结构形状;研究装配变形与结构特征变化从叶轮结构(固体域)到流场分析模型(流体域)中的传递模式,构建基于装配变形“固-流”传递的叶轮性能分析方法;进而采用试验设计和优化算法集成上述分析方法,以揭示装配变形和结构变化对叶轮流场的作用规律。本项目的实施将促使叶轮多物理场仿真技术拥有处理现场装配变形的能力,为我国叶轮设计与制造技术升级奠定基础。
多学科设计优化方法没有考虑装配变形对叶轮形状和热力特性的影响,其优化结果会由于装配变形而呈现分散性,制约了叶轮装配变形控制效率和在装备中的工作性能。项目以轴流式原动机和离心式工作机叶轮为对象,研究装配变形和制造参数引起叶轮特性偏离设计值的问题。① 分析结构件装配时的配合关系,构造叶轮装配关系的逻辑代数,以简洁和准确地表达装配变形的累积路径;② 研究零件接触曲面上的定位位移、过定位变形和(铆接、焊接、榫接)连接变形的累积机制,将装配变形作用于大尺寸天线、复杂框架结构和两种叶轮的结构形状;③ 研究装配变形与结构特征变化从叶轮结构(固体域)到流场分析模型(流体域)中的传递模式,构建基于装配变形“固-流”传递的叶轮性能分析方法;④ 采用试验设计集成上述分析方法,揭示了装配变形和结构制造参数对叶轮流场的作用规律。本项目不仅使得叶轮多物理场仿真技术拥有处理现场装配变形的能力,而且促进叶轮现场装配控制模式升级。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
基于LASSO-SVMR模型城市生活需水量的预测
基于多模态信息特征融合的犯罪预测算法研究
坚果破壳取仁与包装生产线控制系统设计
基于二维材料的自旋-轨道矩研究进展
浮选机搅拌叶轮流-固耦合振动分析和优化方法研究
贯流泵叶轮与灯泡体相干机理与优化匹配研究
多序多工位下复杂航空结构件装配变形产生、传递与演变规律
实现叶轮机流固耦合数值模拟的一种新途径