Itinerant magnetic metals are important material carriers for studying magnetic quantum critical point and exploring unconventional superconductors. In this project, a new itinerant magnetic material, the high-pressure form of CrSb2 with arsenopyrite-type structure, will be studied detailed characterizations on its high-pressure synthesis and physical property. The ambient-pressure form of CrSb2 exhibits a long range antiferromagnetic order and narrow-band semiconductor behavior. However, CrSb2 synthesized at high temperature and high pressure will transform into arsenopyrite-type structure with high symmetry. In the past reference, CrSb2 has long-range ferromagnetic order and metal behavior, which is a potential itinerant magnetic metal. The high-pressure phase of CrSb2 has been synthesized successfully in my previous work. In addition to observing the ferromagnetic metal behavior, a new antiferromagnetic phase transition has been found in the ambient-pressure form of CrSb2 at low temperature, which show abundant magnetoelectric properties. On this basis, this project intends to carry out meticulous research on the high-pressure form of CrSb2.The physical properties of high-pressure form of CrSb2 will be investigated both by apply the physical pressure and external magnetic field and by chemical substitution with V or Ti for Cr. Through suppressing long-range magnetic order to reach magnetic quantum critical point, we hope to discuss these unconventional properties and explore possible unconventional superconductivity.
巡游磁性金属是研究磁性量子临界点、探索非常规超导体的重要材料载体,本项目拟针对一个新的巡游磁性材料,即具有黄铁矿结构的CrSb2高压相,开展详细的高压合成与物性调控研究。常压下合成的CrSb2具有低对称性的白铁矿结构,表现出长程反铁磁序和窄带半导体行为;而在高温高压条件下合成的CrSb2会转变为高对称性的黄铁矿结构,文献报道其具有长程铁磁序和金属导电行为,因此是潜在的巡游磁性金属。申请人在前期工作中成功合成了CrSb2的高压相,除了观察到铁磁金属行为外,还在低温发现了一个新的反铁磁相变,表现出更加丰富的磁电现象。在此基础上,本项目拟对黄铁矿结构的CrSb2高压相开展深入细致的调控研究,一方面对其施加物理压力和外加磁场进行外场调控,另一方面通过Cr位掺杂V或者Ti进行化学调控,通过抑制长程磁有序实现磁性量子临界点,研究与之相关的反常物性并探索可能的非常规超导电性。
采用高温高压合成了黄铁矿结构CrSb2多晶材料,并对其物理性质进行了详细的研究。研究发现CrSb2高压相转变为金属,而且在降温时会出现两个连续的磁转变,首先在~160 K发生铁磁转变,然后在~86 K出现反铁磁转变。在常压下施加外磁场,会逐渐抑制低温的反铁磁转变,在3T以上获得铁磁金属基态。而施加高压时,反铁磁转变迅速往高温移动,铁磁转变往低温移动,二者相遇后系统基态转变为反铁磁金属,进一步增加压力会逐渐抑制反铁磁转变,在~9 GPa时被完全压制,实现反铁磁量子临界点。此外,通过Cr位掺杂V或者Ti进行化学调控,通过抑制长程磁有序实现磁性量子临界点,研究与之相关的反常物性并探索可能的非常规超导电性。
{{i.achievement_title}}
数据更新时间:2023-05-31
瞬态波位移场计算方法在相控阵声场模拟中的实验验证
基于LBS的移动定向优惠券策略
肝癌多学科协作组在本科生临床见习阶段的教学作用及问题
污染土壤高压旋喷修复药剂迁移透明土试验及数值模拟
夏季极端日温作用下无砟轨道板端上拱变形演化
富氢材料高压结构与物性研究
LiHn的高压结构与物性理论研究
极端高压下拓扑材料的结构与物性关联研究
高压下卤族元素材料的结构与物性研究