Vitrification preservation is an ideal approach for long-term storage of some precious biomedical resources like cells and tissues, and thus has important application potential in both clinical practice and scientific research. The currently available methods have achieved favorable results for several types of cells. However, there is still much scope to improve the operation efficiency, the preservation recovery as well as the application range..In order to accommodate the requirement of technical improvement, this project is proposed to conduct a series of fundamental research on vitrification preservation from the perspective of thermal physics. Considering the space and time scales of most critical heat transfer processes in vitrification preservation are very small, the micro-scale heat transfer mechanisms will be studied first to support the analysis and optimization of certain preservation processes or systems. Subsequently, several advanced micro-scale heat transfer enhancement principles will be utilized to improve the vitrification system, including the applying mode of working fluid, the surface characteristic of carrier, and the topology of bio-sample inside. With such improvements, it is expected to reduce the thermal resistances from both surface convection and internal conduction, and also extend the volume capability of vitrification system to allow for preservation of more types of cells and tissues..Some preliminary study has been conducted, and the results have indicated the strategy of this project is feasible and promising. The research achievements will promote the breakthrough of vitrification preservation, and enrich the theories of bio-heat/mass transfer as well.
玻璃化保存是细胞、组织等珍贵生物医学资源的理想保存方法,具有重要的应用价值。现有玻璃化保存方法虽然对个别对象有所成效,但处理效率、保存效果和应用范围都仍有很大提升空间。.为适应技术革新需求,本项目从热物理角度对玻璃化保存方法展开基础研究。首先针对许多关键传热过程的空间和时间特征尺度都非常微小的特点,系统研究玻璃化保存中的微尺度传热机理,以支持对保存过程的分析预测以及对保存系统的优化设计。进而研究面向玻璃化保存的微尺度强化传热方法,包括基于微通道、微射流等原理的降复温工质作用方法、基于微结构覆层的载体表面特性改造方法以及基于薄膜或分形原理的样品拓扑结构优化方法,从而同时减小对流换热热阻和内部导热热阻,提升系统性能并保持样品体积灵活性。.申请人前期工作已初步证明,本项目研究思路具有较高的可行性和先进性。进一步研究有望实现玻璃化保存技术的突破,推动相关行业的发展,也将丰富微尺度生物传热传质理论。
玻璃化保存是细胞、组织等珍贵生物医学资源的理想保存方法,具有重要的应用价值。现有玻璃化保存方法虽然对个别对象有所成效,但处理效率、保存效果和应用范围都仍有很大提升空间。为适应技术革新需求,本项目广泛探索了多种面向玻璃化保存的微尺度强化传热方法,包括基于微通道、微射流等原理的降复温工质作用方法、基于微结构覆层的载体表面特性改造方法以及基于凝胶薄膜的样品封装方法,从而同时减小对流换热热阻和内部导热热阻,提升系统性能并保持样品体积灵活性;进一步地,对典型应用强化传热原理的玻璃化保存系统中的耦合传热机理展开了较深入的研究,以支持对保存过程的分析预测以及对保存系统的优化设计。理论和实验研究结果都表明,本项目成果有助于推动玻璃化保存技术的突破,促进相关行业的发展,具有广阔的应用前景和重要的社会价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
生物材料玻璃化低温保存过程中的强化传热问题
纳米流体强化传热微对流机理及微尺度效应研究
脂肪干细胞微液滴封装及其玻璃化保存过程的机理研究
界面多尺度结构效应强化传热的机理研究