With the rapidly development of rock engineering,the mechanical response of joint rock mass becomes a critical issue, which affecting the safety and stability of the underground rock engineering. The distribution of joints and fissures in rock mass has random characteristics, the same with rock strength parameters and external loads on joint rock mass. Therefore, underground rock engineering has unavoidable risk under these uncertainty factors. Risk caused by the uncertainties has attracted increasing attention by researchers and engineers.So it is a very important question for researchers and engineers to study the uncertains in rock engineering from theroy and engineering application. In order to research the stochastic mechanical response of joint rock mass, engineering stochastic mechanics theory can be adopted; the randomness of rock joint fissures distribution , rock strength parameters and external loads on joint rock mass are taken into consideration. Based on stochastic analysis method, the safety and stability of the typical large underground rock cavern project is studied by using mechanical properties of Representative Elemental volume(REV). Failure modes of the typical underground rock project with the influence of random factors will be revealed. This subject research also explores spatial and temporal response of the rock mass engineering risk and also to research a valid method to define the risk classification for joint rock engineering. Measures to deal with the joint rock risk will be proposed. Numerical analysis result will be compared to rock block experimental result. Through studying the key scientific issues above, it will provide reasonable and effective methods for selecting design and construction cases, rock strength parameters, and caven support or reinforcement measures for underground rock project etc. It also can promote the research development in the rock mechanics stochastic analysis field.?So this research has a reseanable significance in theroy and engineering application.?Please support our research.
节理岩体的力学响应特性成为影响岩石地下工程安全稳定性的至关重要问题。岩体中节理裂隙分布的随机性、岩体力学强度参数及所遭受的外界荷载的不确定性等使得地下工程不可避免地存在风险,对不确定性因素造成的风险越加受到人们的重视。本课题运用随机力学理论,考虑节理岩体节理裂隙分布、岩体力学参数及外来荷载的随机性,研究节理岩体的随机力学响应问题,并用地质代表单元体的力学特性以随机分析法研究典型的大型地下洞室工程的安全稳定性,揭示典型地下洞室工程在随机因素作用下的失效破坏模式,并对洞室风险的时空响应问题进行探索,进行相应的洞室工程风险分级机制的研究,提出应对风险的措施。并拟开展一定的节理岩体单元体的块体模型试验,并与数值分析做对比。通过以上关键科学问题的研究,为节理岩体地下洞室工程的设计施工方案和参数的选取、支护加固措施的选择以及风险应对措施的制定提供科学有效的依据,推动岩石力学随机分析领域的研究和发展。
本项目按计划完成了四部分内容,.(1)开展了类岩石的含多裂隙岩块的抗压试验。试块中分别制作了多条贯通节理。求得随节理条数增加试件强度下降的曲线。在内置三维裂隙的试验中,配制成功了透明性很好的脆性度比前人大幅提高的新型树脂类材料,并创制了试件内可设置中空裂隙,且其中可注入有压水的工艺技术。成功地开展了试验,超出国内外前人的水平。.(2)基于其他学者的理论研究基础,考虑节理裂隙的隙宽,应用蒙特卡洛方法编制了可视化二维和三维随机节理裂隙网络模拟生成程序,并将模拟产生的随机节理裂隙导入到数值软件中建立相关数值模型。实现节理裂隙研究几何形态随机分析及展示。.(3)用数值分析模拟裂隙扩展,运用DDARF、Marc等软件分析了多裂隙试件受压后的力学效应,其中还研究裂隙组具有不同倾角等多因素的影响。在FLAC-3D软件基础上开发了新的弹脆性本构模型并采用超细单元划分法。成功地模拟了裂隙扩展过程,比前人成果好很多。还成功模拟了裂隙中有压水时裂隙扩展的工况。此外还对DDA和DDARF分析法的功能做了扩充和改进。比如划分单元可以采用多元尺度法等。这也是一个重要的进展。并研究了锚杆加固裂隙体的效应等。.(4)研究随机节理岩体地下洞室及边坡稳定性,考虑岩体内节理分布的随机性及围岩力学参数的随机性对工程稳定性的影响。并将研究成果应用于泰山抽水蓄能电站的具体工程中。.依托该基金共发表了12篇科学论文,其中8篇为SCI和EI收录6篇,获得国家发明专利1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
节理岩体动力稳定性及其工程应用研究
层状各向异性裂隙岩体数值方法及其在复杂岩体工程中的应用
柱状节理岩体的扰动特性和分析方法研究
节理岩体工程力学特性的数值仿真试验方法研究