Gear transmission system of a locomotive driving system is the key unit connnecting the motor and the wheel-set for power delivery. Its dynamic performance plays a vital role in the stability, relaibility and safety of the locomotive and its driving system. As growth of the locomotive operation speed, dynamic interaction between the wheel and the rail is becoming more and more intensive, and dynamic effects of the internal nonlinear factors in the gear transmission system are more apparent, which will cause a series of problems easily, such as torsional self-excited vibration of the driving system, wheel-rail contact vibration and adhension performance degradation, or even derailment. To obtain deep insight into the vibration performance of the locomotive and its driving system under the nonlinear coupled interactions between the gear transmission system and the wheel-rail contact with the traction motor output variations, those research methods, such as theoretical analysis, numerical modelling and experimental test, are used in this project. A dynamic model of the locomotive with its driving system is developed by considering the complicated nonlinear dynamic excitations from the gear transmission system, the traction motor and the wheel-rail contact, which enables the reveal of nonlinear coupling vibration mechanism of the locomotive and its driving system. Based on the developed model, effects of the gear transmission system and wheel-rail contact on the locomotive and its driving system could be investigated and optimization of the locomotive system parameters can be achieved. This project is expected to supply theoretical foundation for guarantee of locomotive operation stability, reliability and safety.
齿轮传动系统作为机车驱动系统中连接电动机与轮对进行动力传递的关键装置,其动态性能对机车及其驱动系统的稳定性、可靠性及安全性起着至关重要的作用。随着铁路机车运行速度的提高,轮轨动态作用不断增强,齿轮传动系统内部非线性因素的动态影响愈发突出,容易引起驱动系统扭转自激振动、轮轨接触振动、轮轨黏着性能下降甚至脱轨等方面的一系列问题。本项目针对牵引电动机激扰下的机车齿轮传动系统与轮轨接触非线性耦合振动机理及对机车和驱动系统的振动特性影响问题,采用理论分析、数值模拟与试验测试相结合的研究方法,建立牵引电动机、齿轮传动系统和轮轨接触等复杂非线性动态激励作用下的机车及驱动系统动力学模型,揭示机车(尤其是高速机车)及其驱动系统非线性耦合振动机理,研究齿轮传动系统和轮轨接触动态激励对机车及其驱动系统动态性能的影响,为实现机车系统参数的优化设计、保障机车运行稳定性、可靠性及安全性提供理论基础。
本项目围绕机车齿轮传动系统与轮轨接触非线性耦合振动机理及对机车系统振动特性影响的问题,开展了齿轮传动系统内部动态激励理论计算模型与方法的研究,齿轮传动系统和轮轨非线性接触耦合作用机理研究,复杂激扰条件及极端工况下的机车系统振动特性研究。项目研究建立了考虑齿轮传动系统动态耦合效应的机车—轨道耦合动力学模型,包括垂向、垂纵、及空间耦合三种动力学模型,揭示了动力传递路径“牵引电机—齿轮传动—轮轮系统”中各环节的动力学相互作用机制,探明了齿轮传动系统内部动态激励与轮轨非线性接触激扰共同作用机理。建立了变位齿轮时变啮合刚度解析计算模型与方法,获得了变位系数对齿轮传动系统动态激励与动态响应特性的影响规律;改进了传统的“切片式”齿根裂纹啮合刚度计算方法,提高了沿齿宽非均匀分布齿根裂纹故障动态激励计算精度;提出了齿根裂纹影响下的齿轮轮体刚度计算模型,建立了齿根裂纹齿轮轮体刚度准确计算方法,拓展了传统的健康齿轮轮体刚度解析计算方法。探明了齿轮传动系统动态耦合效应对机车—轨道耦合动力学系统的动态特性及引起的轴重转移规律,获得了牵引电机吊杆参数优化建议值;揭示了齿轮传动系统齿根裂纹故障引起的系统振动响应特征及故障演化过程中的振动特征演变规律,建立了齿轮传动系统内部故障激励源与机车振动特征之间的映射关系。项目研究成果完善了齿轮传动系统内部动态激励计算方法,提高了计算精度,进一步拓展和丰富了机车—轨道耦合动力学理论体系,可为机车动态性能优化设计、机车齿轮传动系统动态性能评估、减振降噪、故障诊断等提供理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
粗颗粒土的静止土压力系数非线性分析与计算方法
敏感性水利工程社会稳定风险演化SD模型
基于MPE局部保持投影与ELM的螺旋锥齿轮故障诊断
基于抚育间伐效应的红松人工林枝条密度模型
复杂激扰环境下机车齿轮传动系统故障机理与振动特征演变规律研究
基于轮轨高频振动非线性接触模型的轮轨噪声研究
行星齿轮传动接触特性与系统振动动态耦合机理研究
基于热弹耦合多物理场的高速重载齿轮传动系统非线性振动机理研究