The practice application in coal mines demonstrated that CO is sourced from: CO released by spontaneous combustion of coal, desorption of the primitive CO in coal and rock seam, and CO generated in the process of blasting operation, oxidation in coal wall and tail gas exhaustion of explosion-proof vehicle. The diversified sources of CO pose a challenge to coal mine practices. On the one hand, CO being treated normally as the indicative gas for predicting the coal spontaneous combustion in its early stage, control measures have to be taken if CO concentration exceeds the limit. On the other side, some coal mines have adopted a range of measures after they found CO exceeded the limit, but actually no spontaneous combustion occurred. This project will investigate the mechanism of CO generation in the primitive coal and rock seam, adsoprtion features, occurrence condition and their relationship with such factors as deposition environment, coal metamorphism, tectonic movement and temperature. Furthermore, the mathematical model that reflects the relationship between CO adsorption amount and various quantified physical indicators will be established. Consequently, the generation mechanism of coal hole, oxygen adsorption by cracks and oxidation CO is researched under the influence of mining load. At last, the CO desorption in coal (rock) seam and their dissipation law and accumulation condition in mine environment in the process of quick mining are investigated; the CO generation, dissipation, dilution and accumulation causing disasters in case of fire zone, residual coal, blasting operation and special explosion-proof vehicle in coal mines are studied; the methods controlling CO in coal mines with high production and efficiency are proposed. The research results are of paramount significance to enhance the correctness of spontaneous combustion prediction and ensure normal and safe production of coal mine enterprises.
煤矿现场实践表明,井下CO来源包括:煤自燃生成CO,煤岩层原生CO解吸,爆破作业、煤壁氧化、防爆车尾气产生CO等。CO来源多样性给现场实践带来难题:一方面,CO作为煤自燃早期预报最常用的标志性气体指标,CO浓度超标,必须采取控制措施。另一方面,一些矿井发现CO超标,并采取了大量预防措施,而实际上煤层并未发生自燃。本课题将研究煤岩层原生CO生成机理、吸附特性及赋存条件及其与沉积环境、煤变质、构造运动、温度等因素的关系,建立CO吸附量与各种量化物理指标之间的数学模型,研究采动载荷影响下煤孔、裂隙吸氧和氧化CO生成机理,研究快速采掘过程中煤(岩)层CO解吸及其在井下环境条件下扩散规律和积聚条件,研究井下火区、遗煤、爆破、防爆车使用等因素中CO生成、扩散、稀释规律及积聚致灾条件,提出适合高产高效矿井CO控制与治理的方法。研究成果对提高自燃预报准确性、保证煤矿企业正常安全生产具有十分重要的意义。
项目研究从实验及数值研究与控制井下多种来源CO的角度出发,研究了煤岩层原生CO生成机理、吸附特性和赋存条件及其与沉积环境、煤变质、构造运动、温度等因素的关系;设计了原生CO测定方案,并以大南湖矿为例进行了验证实验;实验研究了各因素对CO吸附量的影响规律,建立了CO吸附量与各种量化物理指标之间的数学模型;数值研究了采动载荷影响下的煤孔、裂隙的生成规律及其吸氧、氧化过程中CO的生成机理并建立了相应的氧化CO的生成模型;实验研究了煤层CO解吸与工业分析结果、元素分析结果、空隙率及比表面之间的关系,数值研究了解吸CO气体在煤矿井下的扩散规律;采用实验、现场测试及数值研究等多种方式研究了井下火区、遗煤、爆破、防爆车使用等CO来源中CO生成、扩散、稀释规律及积聚致灾条件;鉴于CO各来源的特殊性,提出适合高产高效矿井CO控制与治理的“分源治理”的方法;研究成果对提高自燃预报准确性、保证煤矿企业正常安全生产具有十分重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
钢筋混凝土带翼缘剪力墙破坏机理研究
气载放射性碘采样测量方法研究进展
颗粒堆积多孔烧结床内嵌燃料的高效燃烧及CO控制机理
大中型金属矿井单元化可控式高效低耗通风机理及方法研究
关闭矿井地表沉陷机理、规律及预测方法研究
温室作物周年高产高效的生态环境动态优化控制研究