Recently, nonpolar Polypropylene (PP)cellular electret, a new functional dielectric material, has attracted significant attention from the scientific community after being discharged by high-voltage corona setup. It has a lot of advantages such as low-cost, non-toxic, good chemical and thermal stability, controllable void ratio and excellent electrostrictive performance induced by stored space charges, which open significant possibilities for applications in the field of actuator and ultrasonic transducer. The method that the electrostriction of sample can be controlled by adjusting the space charge quantity provides an effective solution for the key problem of its exact actuation. This project aims to reveal the relationship between electrostrictive micro-strain and space charge quantity of the sample. In this project, In order to enhance thermal stablity of the space charge, the samples will be charged with a nouveau corona discharge method, Heating-cooling Cycling Corona Discharge. Then, the mathematic and physical model based on microscopic space charge distribution and macroscopic electrostrictive properties will be established. In order to adjust and control the material electrostrictive performance, the relationship between the space charge in the cellular electret with crystallity, dielectric and electrostrictive micro-displacement will be investigated. It will provide the sensor system based on new cellular smart material with the theorical and technical support.
高压电晕放电后的非极性聚丙烯孔洞驻极体作为一种新型功能电介质材料近年来成为研究的热点。该材料具有价廉、无毒、化学和热稳定性好、孔隙率容易控制的特点,内部储存的空间电荷更赋予了其优良的电致伸缩性能,使其在驱动器、超声换能器等领域具有广阔的应用前景。通过设定合理放电参数,控制内部空间电荷进而定量调节材料电致伸缩性能的方案,为实现其精确驱动的关键问题提供了有效的解决途径。本项目旨在揭示聚丙烯孔洞驻极体的宏观电致伸缩微应变和微观空间电荷量之间的重要联系:包括从驻极体自身的电学特性出发,设计创新的"热-冷循环电晕放电法",探索最优放电参数,提高空间电荷存储量和热稳定性,并通过建立微观空间电荷分布特性与宏观电致伸缩位移之间的数学物理模型,研究放电后聚丙烯孔洞驻极体的内部空间电荷与材料结晶度、介电性能和电致伸缩性能之间的全面关系。本项目的开展将为实现基于新型孔洞智能材料的传感系统提供理论基础和技术支持。
高压电晕放电后的非极性聚丙烯孔洞驻极体作为一种新型功能电介质材料近年来成为研究的热点。该材料具有价廉、无毒、化学和热稳定性好、孔隙率容易控制的特点,内部储存的空间电荷更赋予了其优良的电致伸缩性能,使其在驱动器、超声换能器等领域具有广阔的应用前景。通过设定合理放电参数,控制内部空间电荷进而定量调节材料电致伸缩性能的方案,为实现其精确驱动的关键问题提供了有效的解决途径。本项目旨在揭示聚丙烯孔洞驻极体的宏观电致伸缩微应变和微观空间电荷量之间的重要联系:包括从驻极体自身的电学特性出发,设计创新的“热-冷循环电晕放电法”,探索最优放电参数,提高空间电荷存储量和热稳定性,并通过建立微观空间电荷分布特性与宏观电致伸缩位移之间的数学物理模型,研究放电后聚丙烯孔洞驻极体的内部空间电荷与材料结晶度、介电性能和电致伸缩性能之间的全面关系。本项目的开展将为实现基于新型孔洞智能材料的传感系统提供理论基础和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
卫生系统韧性研究概况及其展望
钢筋混凝土带翼缘剪力墙破坏机理研究
吉林四平、榆树台地电场与长春台地磁场、分量应变的变化分析
孔洞结构铁电驻极体聚合物薄膜的压电性能研究
电场诱导反铁电薄膜相变的热释电、电致应变研究
新型P(VDF-TrFE)驻极体制备及其铁电、压电和热释电性能研究
磁增强电晕放电及其对微小粉尘的荷电