Hypersensitivity of model is a characteristics of power flow computation of complicated EHV/UHV power grids as the reactive power losses is very sensitive to the errors of parameters. The optimal reactive power control of whole grids may failure due to the cumulative effect of reactive power errors. This project aims to present a Multidimensional Optimizing Reactive Power and Voltage Control (MORPVC) theory which does not depend on the accurate model of the whole grids' power flow. The main contents include: Hypersensitivity of model and spatiotemporal dynamic characteristics of reactive power and voltage of complicated EHV/UHV power grids, theoretical system of multidimensional optimizing reactive power and voltage control, the optimization model and algorithm of characteristic parameters intervals of optimizing control of power plants and substations, the Game mechanism of power plants and substations coordination and the control strategies of MORPVC. It's the basic idea of this project can be expressed as follows, (1) automatic voltage control (AVC) is decomposed into substation control, power plant control and plant/substation coordinated control according to three dimensions of time, space, and target; (2) the large power grid is decoupled for fine-grained control units that each characteristic parameters and their interval widths used as the control variables in reactive power optimization, which can avoid control failure due to its hypersensitivity of model; (3) multidimensional control strategies and dynamic triggering criterion of MORPVC will be developed based on spatiotemporal dynamic characteristics of reactive power and voltage. (4) multidimensional optimization control method will be established according to the coordinated control strategy which developed by the method combining Game Theory and Nash Equilibrium analysis. The proposed methodology is of great significance to ensure the voltage security, the reliability and the operation economy of large power grids.
含超/特高压的复杂大电网因其无功损耗计算对参数误差存在模型高敏性,直接采用全网无功优化控制会因无功误差累积效应导致控制失效。本项目研究不依赖于全电网精确潮流模型的无功电压多维趋优控制理论,主要内容包括:复杂大电网的模型高敏性和无功电压时空动态特性,无功电压多维趋优控制理论体系,厂站趋优控制特征参数区间的优化模型与算法,以及厂/站协调的博弈机理与多维趋优控制策略。基本思路是,将自动电压控制按时间、空间和目标三个维度分解为站控制、厂控制和厂/站协调控制;通过将大电网解耦为细粒度控制单元,并对各单元以特征参数及其区间宽度为控制变量进行无功优化,从而避免模型高敏性导致控制趋劣的问题;基于电网无功电压时空动态特性来制订各维度的趋优控制策略和动态触发判据;结合博弈论纳什均衡分析方法来制定协调控制策略,建立系统的多维趋优控制方法。所提方法体系对保障大电网的电压安全性、可靠性与运行经济性具有重大意义。
含超/特高压的复杂大电网因其无功损耗计算对参数误差存在模型高敏性,直接采用全网无功优化控制会因无功误差累积效应导致控制失效。本项目研究不依赖于全电网精确潮流模型的无功电压多维趋优控制理论,主要内容包括:复杂大电网的模型高敏性和无功电压时空动态特性,无功电压多维趋优控制理论体系,厂站趋优控制特征参数区间的优化模型与算法,以及厂/站协调的博弈机理与多维趋优控制策略。基本思路是,将自动电压控制按时间、空间和目标三个维度分解为站控制、厂控制和厂/站协调控制;通过将大电网解耦为细粒度控制单元,并对各单元以特征参数及其区间宽度为控制变量进行无功优化,从而避免模型高敏性导致控制趋劣的问题;基于电网无功电压时空动态特性来制订各维度的趋优控制策略和动态触发判据;结合博弈论纳什均衡分析方法来制定协调控制策略,建立系统的多维趋优控制方法。所提方法体系对保障大电网的电压安全性、可靠性与运行经济性具有重大意义。.项目围绕大电网模型高敏性和无功电压多维趋优控制,建立了完整的无功电压趋优控制的多维架构和方法体系,提出了无功电压多维趋优控制的厂/站控制策略和协调方法,建立了多主体无功电压调控的合作博弈机制,为大电网无功电压控制的研究、分析、设计和运行提供新的理论支撑、分析手段和工程方法,有效解决了大电网模型高敏性、无功优化困难和无功电压调控失配的问题。.项目发表学术论文51篇,其中SCI收录4篇,EI收录36篇,已投稿SCI刊物论文2篇,出版学术专著1部,申请国家发明专利21项,其中授权16项,获得省级科技进步奖三等奖1项,培养博士生3名,硕士生13名,其中博士生毕业1名,硕士生毕业9名。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
针灸治疗胃食管反流病的研究进展
可动态重构的智能电网电压无功优化与协调控制研究
高中压配电网电压/无功控制的模糊动态优化理论与算法
微电网分层/分散控制结构与自趋优控制技术研究
基于ADMM的微电网群分布式无功电压优化控制方法研究