Coatings have been widely applied in marine equipment like ships. However, the sailing resistance, energy consumption and emissions will increase and the service life of composite coatings will be shortened as the result of the attachment and reproduction of marine fouling organisms. The controllable layered degradation superhydrophobic coatings is a kind of possible solution to the mentioned problem. In this project, we intend to design and prepare the layered degradation superhydrophobic coatings with materials such as graphdiyne, poly(L-lactide), polyurethane and nano-SiO2, by adjusting the ratio between graphdiyne and poly(L-lactide) to control the degradation speed of the coatings and thus achieve the layered degradation, and by adjusting the dosage of nano-SiO2 to ensure that the surface roughness can result in nano-structure with superhydrophobic property. The superhydrophobic property of the coating can make fouling organisms uneasy to attach and layered degradation generates new surface in that way fouling can fall off in time decreasing the sailing resistance. The influence of the coating’s component materials synthesis condition, the process to prepare and fabricate the coating, component’s molecule structure, aggregation structure, ratio and micro structure on the antifouling and drag reduction property of the coatings will be researched. The fouling process and drag reduction rule of the coating when it is under marine circumstance will be explored, therefore we can conclude out that the methods to fabricate layered degradation superhydrophobic coatings and reveal the regulation and drag reduction mechanism of controllable layered degradation and nano-structure. Furthermore, we can figure out the relationship between coating components, nano-structure and properties like antifouling and drag reduction, which may provide new and important theoretical basis for the design, preparation and application of the marine antifouling drag reduction composite coatings in growing engineering practice through the efforts that mentioned above.
涂层在船舶等海洋装备上广泛应用,但是海洋污损生物的附着、繁殖等将引起船舶航行阻力增加并缩短其使用寿命;采用可控分层降解超疏水涂层是解决这一问题的可期待的有效途径。本项目采用石墨炔、聚乳酸、聚氨酯、纳米SiO2等材料制备分层降解复合涂层,通过调节石墨炔与聚乳酸配比控制涂层降解速率达到分层降解,调节纳米SiO2用量以控制表面粗糙度构造微纳结构达到超疏水性。利用超疏水性使得污损生物难以附着,分层降解形成新的表面使污损物及时脱落实现防污减阻。研究涂层组分材料合成条件及涂层制备过程,研究组分分子结构、聚集态结构、配比及微观结构对涂层防污减阻等性能的影响,探索涂层在海水环境下的污损过程和减阻规律,建立分层降解超疏水涂层的制备方法,揭示可控分层降解和微纳结构调控机制及防污减阻机理,建立涂层组成、微观结构与防污减阻等性能之间的关系,为工程实践中日益增长的海洋防污减阻涂层的设计、制备及应用提供新的理论依据。
船舶等海洋装备在海洋中长期服役后,海洋污损生物会在其表面大量附着;海洋污损生物的附着与繁殖过程所产生的生物污垢以及海水本身会对船舶等海洋装备带来两个方面的危害:一是增加船舶表面粗糙度,引起航行阻力增加;二是加速船舶等海洋装备表面的腐蚀,显著缩短其使用寿命。实际上,海洋防腐防污涉及到能源、国防、环境等方面问题,目前是一个国际性难题,难就难在环境友好防污防腐,即防污防腐涂层使用过程的环境友好性。有机氟材料可以制备出低粘附性能涂层,但单一使用有机氟材料制备的涂层与基体附着性能差;可降解高分子材料可以通过逐步降解不断形成新的表面到达防污防腐减阻目的,但使用单一可降解高分子材料会存在力学强度、附着力及成本高等问题。本项目围绕着绿色环保高性能海洋防污防腐减阻涂层的研究目标,通过分子设计,将氟碳聚合物材料、聚氨酯、纳米材料、可降解高分子材料结合在一起制备出综合性能优异的海洋防污防腐减阻涂层开展了研究;通过调节纳米粒子用量以控制涂层表面粗糙度以及降解性能。研究涂层组分材料合成条件、涂层组分结构和配比、涂层制备过程及结构对涂层防污防腐等性能的影响,建立超疏水涂层的制备方法,探索防污防腐和微纳结构调控机制机理,建立涂层组成、微观结构与防污减阻等性能之间的关系。在本项目的资助下,项目执行期间已在国内外有影响的期刊上发表论文14篇,录用2篇,国家发明专利授权7件,获湖南省自然科学二等奖1项(排名第5),较好的完成了研究计划。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
拥堵路网交通流均衡分配模型
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
Ag/TiO2复合陶瓷涂层的超疏水设计及其海洋防污性能研究
具有纳米防污剂协同作用和自修复功能的仿生超疏水涂层的制备及防污机理研究
各向异性超疏水表面的设计制备及其定向减阻性能
新型船用防污、减阻仿生涂层的结构设计和制备研究