How to discover the target service from the mass services quickly and accurately is the major problem in cloud computing. However, services description and discovery in cloud computing environment have mainly followed the pay-before-you-go (PBYG) fashion, and it is thus difficult to describe the heterogeneous and evolving service information timely, and to discover appropriate service accurately and efficiently. To address above problem, this research project, which is inspired by new ideas in the fields of dataspace and data integration, will focus on how to describe and discover services in a pay-as-you-go(PAYG) fashion. First of all, a very loosely structured data model is presented to describe services and the relationships among them, and then the dynamic evolution mechanism of this model is constructed by analyzing the characteristics of service evolution, after which, the incremental service description methods are presented. Secondly, the model's query algebra is studied, and then the ways to lazily compute and query this model are provided for supporting best-effort queries. Thirdly, semantic mapping rules are generated gradually, and then an approach to annotate semantic description is also proposed, and thus an effective mechanism based on PAYG fashion, which adds semantics to the query processing, is constructed. It is to support semantic service discovery. Finally, the validity of the work in this project is examined by theory and experiment. The project will not only provide new ideas and theoretical basis for service description and discovery in cloud environment, but also support the real-time service discovery.
如何从海量服务中快速准确的发现目标服务是云计算研究的重点和难点。然而,目前云计算环境下服务描述和发现主要遵循pay-before-you-go(PBYG)模式,难以及时描述动态异构服务信息和准确高效的发现合适服务。针对上述问题,项目拟构建pay-as-you-go(PAYG)模式的服务描述和发现机理。项目引入数据空间和数据集成新思想,首先吸收极松散结构模型优点建立服务描述模型,再从分析服务演化特点入手,研究该模型动态演化机理,进而研究渐进式服务描述方法;然后,研究模型查询代数,设计延迟计算、服务相似度等算法实现支持best-effort查询的服务发现,同时,探究语义映射规则渐进生成和语义标注方法,形成有效的PAYG模式服务语义动态添加机制,实现该模式语义服务发现;最后,构建评估机制验证所提出的理论和方法。项目将为云环境服务描述与发现研究提供新思路和理论依据,为实时服务发现提供支持。
如何从海量服务中快速准确的发现目标服务是云计算研究的重点和难点。然而,目前云计算环境下服务描述和发现主要遵循pay-before-you-go模式,难以及时描述动态异构服务信息和准确高效的发现合适服务。本项目针对上述问题,研究pay-as-you-go模式的服务描述和发现机理,具体研究内容包括:pay-as-you-go模式的服务描述机理和方法;pay-as-you-go模式的服务发现机理和方法;pay-as-you-go模式服务描述和发现的评估方法。. 工作按照原定计划顺利完成,取得了预期的效果,具体如下:1)给出了pay-as-you-go模式服务的描述和发现框架,首先采用极松散结构数据模型描述服务信息,然后给出服务发现中的延迟计算方法,提出了pay-as-you-go模式语义服务描述方法,最终实现了支持best-effort查询的服务发现,提高了查询效率。2)给出了服务描述模型的查询代数,包括选择、投影、连接等操作,能够支持pay-as-you-go模式的关联查询。3)提出面向极松散结构模型的、支持更新操作的细粒度和动态的访问控制框架,给出更新操作集和支持更新操作权限的访问控制规则的定义,提出了访问请求的动态重写算法,可实现支持动态更新的细粒度数据空间访问控制。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
服务经济时代新动能将由技术和服务共同驱动
瞬态波位移场计算方法在相控阵声场模拟中的实验验证
职场排斥视角下服务破坏动因及机制研究——基于酒店一线服务员工的实证研究
基于LBS的移动定向优惠券策略
云模式下多粒度计算服务的自适应调度策略与机制研究
云服务环境下知识发现与数据挖掘的安全与隐私保护关键技术
云计算环境下大规模工程计算外包服务的安全机制研究
云计算环境下的多源信息服务系统研究