Low molecular weight heparins (LMWHs) have been considered as one of the most important drugs in preventing and treating thrombosis for years. Besides, they exhibit a variety of potential activities beyond anticoagulant effect. It will be increasingly important to develop enzymatic depolymerisation method for LMWHs production. However, the uninvestigated, dynamic catalyzed mechanism of heparin lyases limit the detailed design of production method, due to the lack of real time monitoring method for the depolymerizing processes. The defined mechanisms were all reflected from the fixed time characterization of depolymerized products, without association with kinetic and dynamic properties in manufacturing process (The enzymatic process was like a “black box”).To analyze the dynamic mechanism,this research will trace the enzymatic depolymerisation process in situ by bringing in Quartz Crystal Microbalance (QCM) technology. The research scope includes: design of heparin immobilized electrode chip of QCM; establish the QCM platform for monitoring depolymerisation process using electrode chip as the micro-reactor, concluding the reacting mechanism from kinetic and dynamic changes; establish the flow cell and micro-channel to separate the product in a continuous mode, ensuring simultaneous sampling and depolymerisation; detect the structure change with Matrix-assisted Laser Desorption Ionization Time of Flight Spectrometry (MALDI-TOF-MS) to directly confirm the results.
低分子肝素(Low Molecular Weight Heparins,LMWHs)是一种重要的抗凝药物,并具有广泛的潜在应用价值。在肝素酶降解工艺生产LMWHs的精细化设计中,需要详细了解肝素酶降解的动态机制。但现有的研究方法都采用对降解产物进行定时检测的方式,进而推测肝素酶的降解机制。由于缺少对降解过程实时监测的方法,不了解酶解片段的结构等性质随反应时间的变化(反应进程处于“黑箱”状态),不能满足研究肝素酶降解动态机制的要求。本研究拟引进QCM技术原位追踪肝素酶降解的进程,精细研究肝素酶降解底物的动态机制。研究内容包括:建立肝素固定化的QCM 电极芯片作为微反应器,实时监测肝素酶降解进程,研究肝素的动态酶降解机制。构建QCM流动检测池及微通道,对降解产物进行连续分离,实现采样频率和与酶降解频率的同步。结合MALDI-TOF-MS方法检测肝素降解产物结构变化特征,直接验证肝素酶降解机制。
大量临床前及临床研究结果显示,肝素可以减缓多个器官纤维化进程。其中,特发性肺纤维化(Idiopathic Pulmonary Fibrosis, IPF)是一种致死性疾病,临床上尚无有效的治疗药物。为了筛选得到选择性抗IPF功能的肝素类药物,同时减少因大分子肝素多靶点特性带来的副作用,本研究采用单独或者组合酶降解的方式,构建酶降解的中低分子量肝素文库。建立博来霉素(Bleomycin,BLM)诱导小鼠肺损伤和肺纤维化模型系统,筛选有效治疗IPF的LMWHs药物组分。通过基于芯片的酰胺亲水相互作用色谱- 傅里叶变换-电喷雾质谱(Chip-based amide hydrophilic interaction chromatography -Fourier transform- Electrospray ionization Mass Spectrometry, HILIC-FT-ESI-MS),聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis, PAGE),以及高效液相色谱(High Performance Liquid Chromatography, HPLC)表征能够有效治疗肺损伤和纤维化的酶降解肝素产物的结构特征。研究结果表明,由肝素酶I和III单独控制降解得到的,分子量相对较高的组分(I-2,III-2),能够减轻BLM诱导的小鼠肺损伤程度,减缓肺纤维化进程。此外,经筛选得到的有效产物均能够抑制高迁移率组蛋白B1(High-Mobility Group Protein B1, HMGB-1)表达,阻止E-钙粘蛋白(E-cadherin)表达下调,并减少小鼠肺组织中成纤维细胞的累积。因此, 酶降解肝素I-2和III-2可能同时针对几种途径减轻博莱霉素诱发的肺纤维化程度。 .同时,本研究建立了CCl4诱导小鼠肝纤维化活性模型,对现有的组合酶降LMWHs及其衍生物文库进行了活性筛选,得到了具有抗肝纤维化活性的组分。在此基础上,对LMWHs干涉疾病进展过程相关分子机制进行分析。本研究的研究结果为LMWHs抑制肝纤维化活动的构效关系研究提供依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
低轨卫星通信信道分配策略
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于细粒度词表示的命名实体识别研究
结核性胸膜炎分子及生化免疫学诊断研究进展
基于石英晶体微天平的端粒酶及其抑制剂研究
基于石英晶体微天平(QCM)的自组装手性分子识别技术
石英晶体微天平技术用于水稻悬浮细胞重金属毒性与耐性的动态监测与研究
石英晶体微天平(QCM)质量灵敏度的关键技术研究