In the last three decades, process monitoring and fault diagnosis have been studied intensively in the control community and many theories and methods developed. However, this research field has not created applicable technologies and there are very few industrial applications. In the same 30 year period, model predictive control (MPC) technology has been widely applied in process industries and has generated enormous economical and social benefits. The major obstacle that prevented the industrial applications of process monitoring and fault diagnosis is the high cost of modeling. In this project, in order to solve the modeling issue in process monitoring and fault diagnosis, we propose the research project of “system identification for process monitoring and fault diagnosis” that aims to promote industrial applications of process monitoring and fault diagnosis. In process monitoring and fault diagnosis modeling, process inputs are corrupted by measurement noises. Therefore, this project will focus on errors-in-variables (EIV) system identification. We will study multivariable closed-loop EIV system identification in both discrete-time and continuous-time. We will provide systematic solutions to the four basic identification problems: test design, parameter estimation, order selection and model validation. The work will result in applicable EIV system identification methods.
过去的30年来,自动化界对过程监测与故障诊断进行了大量研究,产生了很多理论和方法。但是,该领域整体上没有形成实用的技术,工业应用很少;特别是与模型预测控制技术的广泛应用相比。导致这一困境的最大问题是动态建模成本太高。为了解决动态建模问题,推动过程监测与故障诊断理论和方法在大型工业过程的应用,我们提出“面向过程监测与故障诊断的系统辨识方法研究” 作为研究课题。因为在过程监测与故障诊断建模中,过程的输入大都含有测量噪声,该项目的研究重点是输入含测量噪声的errors-in-variables (EIV) 系统辨识。本项目将研究多变量闭环EIV系统的辨识,包含离散时间系统和连续时间系统。在研究中,将全面解决系统辨识中的四个基本问题,即实验设计、参数估计、阶次确定和模型验证,产生实用的EIV系统辨识理论和方法。
本项目完成了项目计划书的研究内容。提出并发展了error-s-in-variables(EIV)系统辨识的渐近法,包含单变量和多变量系统,也解决了开环和闭环测试的问题,对errors-in-variables系统辨识研究方向起到了推动作用,我们的方法已在第一本EIV系统辨识专著中被引用(T. Soderstrom (2018). Errors-in-Variables Methods in System Identification, Springer),并为基于系统辨识的故障诊断研究方向打下基础。同时,我们还研究了与EIV系统辨识相关的一般系统辨识问题,包括闭环辨识可辨识条件,输出快采样系统辨识方法和输出慢采样辨识方法。本工作还往前多走一步:我们正式提出基于系统辨识的故障诊断这一新的研究方向,并在残差选择、诊断滤波器设计和故障分离方法方面取得成果。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
中国参与全球价值链的环境效应分析
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
面向系统层级多工况下带钢热轧全流程质量监测与故障诊断方法研究
厂级过程控制系统性能监测与故障诊断
船舶电力推进系统状态监测与故障诊断的信息融合方法
面向量子操控的量子系统辨识方法研究