Precise control of compositions and microstructural and/or sub-microstructural morphologies of multi-heteroatom co-doped carbon materials is a key scientific technique for improving their unique and stable performances on electrochemistry. Aim of the current project mainly attempt to fabricate self-co-doped multi-heteroatom (at least tri-atom doping) porous carbon derived from polyphosphazenes through precisely controlled over the chemical structure of polyphophazenes with abundant elements such as phosphorous, nitrogen, oxygen, and/or sulfur and so on. The high performances multi-heteroatom co-doped carbon materials may realized through our molecule designing and controllable synthesizing compositions and chemical structure of polyphosphazene precursors, and adjusting specific areas and micro/mesa porous microstructure of them. Further thermal treatment of transition metal ion in polyphosphazene solutions would realized transition metal oxides modified hetero-atom doped carbons. Based on modern microstructure tuning and analyzing measurements, the project will understand the growing and combination of porous carbons, elucidate the relationship between their morphologies and properties, and reveal the interaction mechanism between doping atoms and carbon atom in atomic levels and the mechanism of electrical transmission. It sought to realize carbon materials with higher purity heteroatom, homogenously dispersion and with orderly porous structure. And they may meet the demands in application of electrode for supercapaacitors, catalyst support, electrocatalysis for oxygen reduction (ORR) and so on. We expect that the current project may provide a theoretical underpinning and support to the industrialization of high technologies of making critical components for new energy through our mastering new methodologies and new processes of fabrication of multi-atom doped carbon materials with excellent performances derived from polyphosphazenes.
精细调控多元素共掺杂碳材料组成与亚微观相态是解决其电化学性能和稳定性的重要科学方法。项目旨在发展以线性聚磷腈为碳前驱体的含P、N、O、S和F等三种以上杂元素共掺杂和自掺杂多孔碳材料。通过分子层面设计聚磷腈中多元素组成和化学结构、对碳材料比表面积和微孔调控来实现其高性能化;同时对比尝试过渡金属盐的聚磷腈溶液“原位”热解的方式制备氧化物修饰掺杂碳材料。采用多种现代微观结构表征和分析测试手段,了解掺杂碳微孔结构的形成、序列化规律等对性能的影响规律,阐明掺杂碳材料组成、结构变化与性能间的关系,揭示多元素与碳原子间的相互作用与电子传输机理,力求使目标材料具有无杂质化多元素均匀的共摻杂和孔结构有序化,使其作为超级电容器电极材料、甚至催化剂载体和氧气还原反应催化剂等方面性能提升。项目的实施将拓展聚磷腈作为掺杂碳材料的新方法和新工艺,为设计轻质和高性能化的新一代能源材料的关键部件提供理论基础和产业化支持。
杂原子掺杂纳米碳材料因其优异的电化学稳定性在能源材料领域备受关注。针对精细调控多元素共掺杂碳材料的组成与亚微观相态这一技术难题。我们利用聚磷腈主链丰富的杂原子含量及侧基可调控性强这一优势,将其作为杂原子掺杂碳材料的优质前驱体。通过运用聚磷腈分子水平的结构设计及聚磷腈与其他材料的复合等多种技术手段,实现了对其衍生碳材料微观结构、元素组成等的精准调控。采用多种现代微观结构表征和分析测试手段,了解了前驱体结构组成对碳材料多孔结构,杂原子含量等多种微观结构的影响,阐明了掺杂碳材料的组成、结构变化与电化学性能之间的关系,解释了杂原子与碳原子之间的相互作用与电子传输机理。解决了杂原子掺杂工艺复杂,分散不均匀等多项难题。同时我们还开发了磷腈基衍生碳-金属复合材料、磷腈基COF、MOF发光材料等一系列能源应用材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
基于MODIS-NDVI数据的植被碳汇空间格局研究——以石羊河流域为例
基于MOFs前驱体绿色可控制备纳米金属(氢)氧化物及其超级电容器性能
双阴离子协同掺杂聚吡咯基宽电压窗口超级电容器电极材料
异质层状材料共球磨构筑薄层钼硫(氧)化物/石墨烯复合物及其超级电容器性能研究
基于细菌纤维素的共掺杂碳纳米纤维的宏量制备及其在超级电容器中的应用