Porous materials have become one of the most intense research topics in chemistry, physics, and material science, ranging from microporous zeolites to mesoporous silica, metal oxides, and macroporous polymers. Metal-organic frameworks (MOFs), also known as porous coordination polymers (PCPs), represent a emerging class of inorganic-organic hybrid porous crystalline materials constructed from the coordination assembly of organic ligands with metal ions or clusters, which are of great interest for their permanent porosity, high surface areas, and tunable pore sizes. Further, MOFs have shown a wide range of useful applications in many aspects such as gas storage/separation, guest exchange/separation, chiral resolution, drug delivery/release, clean energy materials, selective catalysis, molecular recognition, micro-/mesoporous devices, nanoreactor, proton conduction, and so on, which could be regarded as a bridge between traditional zeolites and mesoporous silica materials. Despite the remarkable achievements in this aspect, thus far, the development of reliable and reproducible methods to prepare and stabilize MOFs, especially mesoporous (2 nm < pore size < 50 nm) MOFs with tailored structures and tunable properties remains a great challenge to meet many further applications. Considering all the aspects stated above, in this project, a series of N,O-containing multifunctional ligands with different rigid/flexible ring backbones will be firstly designed, synthesized, and then selected to react with different valence state (from monovalence, divalence, trivalence to tetravalence) S-area/transition/rare-earth metal ions to rationally design and construct advanced multifunctional micro-/mesoporous MOFs by using the experience and method of crystal engineering. Along these lines, their various potential properties mentioned above in first paragraph will be further investigated in detail. In summary, we are very fully confident that there will be applications for an even brighter future of such advanced multifunctional micro-/mesoporous MOF crystalline materials. The progress and breakthrough obtained from the relevant investigation related to this study will not only achieve the controllable aim of structures and properties in the development of future advanced multifunctional crystalline materials but also set up a new bridge between the relevant fundamental and applied researches for a future investigation on a new type of molecular device.
作为一类新型分子基晶体材料,金属-有机框架(MOFs)材料,也叫多孔配位聚合物(PCPs),在气体储存与分离、客体交换与分离、手性拆分、药物缓释、清洁能源材料、选择性催化、分子识别及多孔分子器件等诸多方面均显示出潜在的应用前景;但是要得到结构可控、性能独特的微孔(Microporous)尤其是介孔(Mesoporous)MOFs仍是具有很大挑战性的课题。本项目拟在已有研究成果的基础上设计合成几类不同环骨架氮氧多齿配体作为建筑块,运用晶体工程的理论分别与一、二、三、四价的s区金属、过渡金属以及稀土金属离子等进行配位组装,通过多种合成策略定向设计和构筑具有特定网络结构和高功能的介/微孔MOFs,探索总结目标研究体系的结构与性能之间的关系规律,进而实现调控。相关研究的进展和突破,不仅有望制备出一类多功能多孔分子基晶体材料,而且也为研发具有实用价值的新型分子器件提供新的可能,具有重要意义。
金属-有机框架(MOFs)材料,作为一类新型分子基晶体材料,在气体储存与分离、客体交换与分离、手性拆分、药物缓释、清洁能源材料、选择性催化、分子识别及多孔分子器件等诸多方面均显示出潜在的应用前景;但是要得到结构可控、性能独特的微孔(Microporous)尤其是介孔(Mesoporous)MOFs 仍是具有很大挑战性的课题。本项目在已有研究成果的基础上继续设计合成了几类不同环骨架氮氧多齿配体作为建筑块,运用晶体工程的策略分别与一、二、三、四价的s 区金属、过渡金属以及稀土金属离子等进行配位组装,通过多种合成策略定向设计和构筑具有特定网络结构和高功能的介/微孔MOFs,探索总结了目标研究体系的结构与性能之间的关系规律。相关研究结果为研发具有实用价值的新型分子器件提供了新的可能,具有重要意义。具体研究内容包括利用晶体工程以及纳米材料设计合成的经验和方法,以自主设计研发的几类结构独特并相互关联的有机桥联配体为引导,构筑得到了结构各异的纳米化MOFs基分子基晶体材料100多个,并对其固液相性能进行了全面检测,总结了配体与目标材料结构以及性能之间的关系规律。相关研究结果,对于丰富和发展配位化学理论,解决该类分子基材料研究中的重大基础科学问题以及探索其在分子器件化方面的应用前景都具有重要的参考意义。围绕本项目研究,截至目前已在本领域国际高水平学术期刊上发表SCI收录论文 52 篇,包括Angew. Chem. Int. Ed. 1 篇;J. Mater. Chem. A;Acs Appl. Mater. Inter.;Chem. Commun.等JCR一区文章累计17篇;Chem. Eur. J.; Inorg. Chem.等JCR二区文章18篇;获授权发明专利 7 项;获河南省科技进步二等奖 1 项(2016年)。本人以及团队主要成员曾多次应邀在国内外学术会议上做邀请报告并到国外相关的大学和研究机构(如西班牙巴塞罗纳大学,法国巴黎索绑大学,加拿大英属哥伦比亚大学)访问交流。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
敏感性水利工程社会稳定风险演化SD模型
稀土-过渡混合金属基微孔分子材料的构筑和性质研究
超高倍率长寿命大孔-介孔-微孔负极材料的精细构筑、调控和性能
多功能分子基材料的构筑与结构性能调控
表面功能化淀粉基微孔止血材料的构筑及其止血机制探索