In order to improve the intelligence of UAV (Unmanned Aerial Vehicle) about tracking a moving target, and facing on the actual demand of balancing path planning and adversarial strategies, a path planning method based on pursuit-evasion game in three-dimensional complex environment for UAV is studied. By satisfying UAV constraints, a three-dimensional terrain grid is modeled which is suitable for calculation in game theory and path planning. UAV performance and terrain constraints are both taken into account, which are the bases of the model and solution in pursuit-evasion game. Another important character of the solution is it can deduce the changes of the battlefield situation and figure out the potential danger in advance. Following the guidance of pursuit-evasion strategy, a three-dimensional path planning method of UAV is established based on dynamic potential field and descent gradient. An all-digital simulation system, indoor two-dimensional ground verification, and outdoor three-dimensional flight are engaged in verifying the correctness, effectiveness, and practicality of the proposed principles and methods. The research scheme starts from the adversarial target and UAV flight characteristics, which seamlessly connects the optimal strategy and three-dimensional path planning. The result of pursuit-evasion can guide the path planning, which makes the planned path has both feasibility and optimality. The research results can be widely used in various intelligent agents to find path in three-dimensional complex and adversarial environment. The project also provides and effective technical and novel approach to the integrated mission and path planning system. Furthermore, the research will expand the application of the game theory and have significant value in theory and application.
为提高无人机跟踪运动目标时的智能性,针对航路规划需要兼顾博弈对抗的实际需求,研究三维复杂地形环境下无人机追逃问题的航路规划方法。建立满足无人机约束且便于决策求解与航路计算的三维网格地形模型;在无人机性能和三维复杂地形的双重约束下,建立具有态势推演能力的追逃问题模型与求解方法;在追逃对策的指导下,建立基于动态势场的无人机三维航路规划方法。最后分别进行了数字仿真、室内二维地面实物验证与室外三维飞行实物验证。该项目针对运动目标的智能对抗性和无人机的飞行特点展开研究,在三维复杂地形环境下将最优决策与航路规划进行无缝连接,使追逃对策能够指导航路规划,在保证实际航路可行性的前提下兼顾了最优性。该项目研究成果可广泛应用于各种智能体在三维复杂对抗环境中的航路规划任务,为任务规划与航路规划系统的一体化设计提供切实有效的技术途径和全新的理论方法,并进一步拓展博弈论的应用领域,具有重要的理论意义和工程应用价值。
为提高无人机跟踪运动目标时的智能性,针对航路规划需要兼顾博弈对抗的实际需求,本项目研究了三维复杂地形环境下无人机追逃问题的航路规划方法。首先建立了满足无人机约束且便于决策求解与航路计算的三维网格地形模型;在无人机性能和三维复杂地形的双重约束下,建立了具有态势推演能力的追逃问题模型与求解方法;在追逃对策的指导下,建立了基于动态势场的无人机三维航路规划方法。最后分别进行了数字仿真、室内二维地面实物验证与室外三维飞行实物验证。该项目针对运动目标的智能对抗性和无人机的飞行特点展开研究,在三维复杂地形环境下将最优决策与航路规划进行无缝连接,使追逃对策能够指导航路规划,在保证实际航路可行性的前提下兼顾了最优性。该项目研究成果可广泛应用于各种智能体在三维复杂对抗环境中的航路规划任务,为任务规划与航路规划系统的一体化设计提供切实有效的技术途径和全新的理论方法,并进一步拓展博弈论的应用领域,具有重要的理论意义和工程应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
复杂系统科学研究进展
新型树启发式搜索算法的机器人路径规划
"多对多"模式下GEO卫星在轨加注任务规划
现代优化理论与应用
基于流水避石原理的复杂地形条件下无人机三维航路规划理论与方法研究
复杂地形环境下基于地形坡度进行滑移预测的路径规划算法及其应用研究
复杂场景下移动多Sink节点巡航路径规划问题研究
复杂环境下农业机械视觉导航路径识别方法研究