Aiming at the failure problem of actuator and sensor for vehicle suspension system caused by random road excitation and overweight load, and in order to improve the stability margin of vehicle control system, the analysis on active fault tolerant control (FTC) method for heavy vehicle ECAS/CTIS integrated suspension system with multiple failure modes is conducted. Through inosculating and extending active suspension control theory and FTC theory, a novel fault estimation mathematic model with disabled factor is constructed to descript the multiple fault modes of vehicle ECAS/CTIS suspension, and explore the relationship between fault estimation value and error compensation term. By introducing the T-S fuzzy theory and robust control theory, a fault tolerant observer model for tracking vehicle body height and velocity of ECAS/CTIS suspension system is built, and simultaneously, the fault tolerant tracking control algorithm based on the output feedback and mixed H2/H∞ control is designed. Furthermore, this project makes key research on design method and asymptotic stability conditions of robust adaptive observers for suspension system fault estimation, which is on the basis of taking into account the effects of the suspension system uncertainties and its parameter perturbations, and then a brand new adaptive active FTC control law for ECAS/CTIS suspension system is discovered so as to regulate the stability of the controlled suspension system under suspension failure or non-failure case. Finally, the simulation analysis and test study of ECAS/CTIS suspension system are conducted to verify and correct the proposed controller model by developing the integrated FTC experiment platform of vehicle ECAS/CTIS suspension system, which is to set out the important theoretical and application foundations for developing a new generation heavy vehicle electro-controlled air suspension.
瞄准随机路面激励和超重载荷条件下车辆主动悬架系统的作动器和传感器故障问题,以提高整车控制稳定裕度为目标,围绕重载车辆ECAS/CTIS悬架系统的多模式故障主动容错控制方法展开研究。通过融合和发展主动悬架控制理论与容错控制理论,构建含失效因子的悬架系统多模式故障估计模型,探寻故障估计状态值与误差补偿控制项之间的映射关系;引入T-S模糊理论和鲁棒控制理论,建立ECAS/CTIS悬架系统高度和速度的容错跟踪观测器模型,提出基于输出反馈混合H2/H∞控制的悬架系统容错跟踪控制算法;重点研究考虑系统不确定性和参数奇异摄动下,悬架系统故障估计最优鲁棒自适应观测器设计方法及稳定性条件,探明适合被控悬架无故障和有故障发生情况下悬架系统的自适应主动容错控制律,进而研制车辆ECAS/CTIS悬架系统容错控制综合实验平台,为开发新一代具有自主知识产权的重载车辆电控空气悬架系统奠定重要的理论与应用基础。
重载车辆电控集成悬架系统往往会发生作动器瞬间卡死、传感器控制增益损失以及作动器/传感器部分失效等故障,如何在线精确识别此类故障且获取由于故障带来的系统性能损失,并进行有效的补偿控制以保证车辆系统的稳定性具有重要意义。本项目针对随机路面激励和超重载荷条件下车辆主动悬架系统的作动器和传感器故障问题,以提高整车控制稳定裕度为目标,围绕载重车辆ECAS/CTIS悬架系统的多模式故障主动容错控制方法展开研究。. 首先,提出了一种含失效因子的车辆悬架系统作动器和传感器的多模式故障估计模型,利用故障调节因子表示作动器故障的大小,实现了车辆悬架系统故障难以在线精确估计的难题;其次,提出了一种基于鲁棒H∞观测器的车辆非线性悬架系统主动容错控制器设计方法,基于Simulink的仿真分析表明本文所提出的主动容错控制器可准确估计故障信息,并在此基础上对故障悬架系统进行补偿控制,使故障悬架系统控制目标和各项约束性能指标与无故障主动控制悬架性能相近,提升了故障发生时车辆悬架系统的可靠性;接着,提出了一种基于T-S模糊模型的主动悬架滑模容错控制器,可以较好容忍悬架模型参数摄动带来的振动失稳问题,降低传感器故障带来的性能损失。仿真结果表明本项目所提出的滑模容错控制器在作动器故障情况下,仍然能保证悬架系统的性能指标保持在合理范围内;最后,研制车辆ECAS/CTIS悬架系统容错控制综合实验平台,对所开发的车辆悬架主动容错控制器进行了验证,结果表明该实验平台不但能够评估车辆动力传动系统主动控制效果,还能够改善并保持悬架系统在有作动器/传感器故障和外部扰动下的性能,为重载车辆动力传动系统的智能控制提供理论基础和技术保障。本项目研究成果可实现重载车辆系统的多模式故障在线估计,所开发的主动容错控制器可实现车辆的稳定性控制,为新一代具有自主知识产权的重载车辆电控空气悬架系统的开发提供理论和方法支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
基于多模态信息特征融合的犯罪预测算法研究
卫生系统韧性研究概况及其展望
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
重载车辆ECAS/CTIS集成系统耦合机理及主动控制研究
重载车辆气压制动系统与油气悬架耦合协同控制方法研究
车辆准零刚度空气悬架系统气气联动机理分析与主动容错控制
主动液压互联悬架与车辆稳定性控制系统协同控制方法研究