Nowadays, the objects of rock analysis accelerate to the both extremes of the large and small at space scale, and are often faced with the both ordeal of super long-term service and extreme transient response at time scale, which leads the great challenges in space-time evolution characteristics of rock failure process under hydro-mechanical coupling. The purposes of this project are: (1) To witness the whole processes of rock deformation/rheology, damage and failure then construct space-time evolution model for rock failure process under hydro-mechanical coupling based on a series of macro-mesoscopic experiments; (2) To perform the direct precise time step integration method for the time derivatives of the coupled hydro-mechanical differential equations. In the spatial domain, the large scale physical model is discretized and transformed into a high-resolution numerical model by means of local multi-scale finite element modeling and concurrent scale join approach; (3) To integrate water flow-rock damage evolution space-time multiscale modeling based on the constructed rock constitutive model and concurrent multiscale explicit FEM solver with coarse- and fine-grained parallel strategies develop the computing platform; (4) To reveal the rock damage evolution characteristics and the crack propagation mechanisms of the typical engineering cases based on both high-resolution numerical simulations. Expected results of the project can provide the reference schemes to the analysis and prediction of related issues.
当前,岩体分析对象在空间尺度上分别向极大、极小两个极端加速延伸,在时间尺度上又经常面临超长服役和极端瞬态响应的考验,给岩体及水力破坏过程的空-时演化特征分析带来挑战。项目旨在(1)基于宏细观试验,亲历岩体变形/流变-损伤-破坏的完整演化过程,建立适用于岩体及水力破坏过程空-时演化分析的模型;(2)针对岩体水-力全耦合控制微分方程组,应用高精度的指数型直接积分方法进行显式积分,通过局部多尺度有限元建模和协同尺度联结途径将大尺度物理模型进行空间域离散,转化为高分辨数值分析模型;(3)基于建立的细观本构模型和协同多尺度显式有限元求解,实现水体流动-岩体损伤演化过程的空-时多尺度计算,并依托粗-细粒度并行策略开发大规模软件分析系统;(4)基于高分辨数值计算分析典型工程案例,揭示岩体损伤演化规律和裂纹的扩展机制。项目预期成果可为相关问题的预测和分析提供参考方案。
岩体研究在空间尺度上分别向极大、极小两个极端延伸,在时间尺度上面临超长服役和极端瞬态响应的考验。项目针对岩体及水-力耦合变形破坏空-时演化分析中的数值计算挑战开展研究工作。研究成果包括基于物理实验的认识,提出适用于岩体及水力破坏过程空-时演化分析的模型;针对岩体水-力全耦合控制微分方程组,应用高精度的指数型直接积分方法进行显式积分,通过局部多尺度有限元建模和协同尺度联结途径将大尺度物理模型进行空间域离散,转化为高分辨数值分析模型;基于高分辨数值计算分析方法和典型工程案例,揭示岩体损伤演化规律和裂纹的扩展机制。项目预期成果可为相关问题的预测和分析提供参考方案。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
硬件木马:关键问题研究进展及新动向
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
针灸治疗胃食管反流病的研究进展
深部隧洞卸荷岩体水力特性及破坏机理研究
深部高应力硬岩脆性板裂破坏诱发机理与时空演化特征
基于扩展数值流形元方法的多裂隙岩体破坏过程数值模拟研究
动静组合荷载作用下裂隙岩体损伤演化特征与变形破坏机理