Recently, high-tech electronics are developing towards wearable flexibility. The flexible energy storage devices have attracted growing attention, while their applications have been restricted by key factors such as poor flexibility and low energy density. Based on the successful experiences of assembling CNT films and preparing Ag@C nanowire, we have devised a metal-induced deoxygenation methodology with bottom-up process to assemble orderd carbon-based films and prepare flexible electrodes as well as supercapacitors. It’s possible to realize the fabrication of scalable, foldable, high-performance and flexible electrodes through the introduction of Ag@C nanowire into carbon-based films by adjusting the drive force of self-assembly, which could afford uniform silver@carbon-based films with improved mechanical compliance and conductivity. In order to improve the energy density, metallic oxide nano-particles with high active faradaic pseudo-capacitance were grown in-situ on the surface of Ag@C nanowire/CNT. The mechanics and electrochemical performance of flexible electrodes will be evaluated by supercapacitor system. The integral mechanical and electrochemical performances of the flexible electrodes will be compared by optimizing the synthetic conditions of materials and the packing technologies. The structure-activity relationship and self-assembly mechanism will be revealed by regulating the morphology. The research of the foldable Ag@C nanowire/carbon film electrodes would provide technical support and theoretical foundation for the development of high performance and flexible energy storage devices.
当今尖端电子技术向着可穿戴的柔性化方向发展。柔性储能器件的研发备受关注,而柔韧性差和能量密度低一直是制约其应用的关键因素。申请人在成功制备碳纳米管(CNT)膜和Ag@C纳米线的基础上,设计金属诱导去氧法自下而上自组装二维有序碳基膜和Ag@C纳米线膜,制备柔性电极以及柔性超级电容器。通过调控自组装驱动力及其协同性,在CNT中引入Ag@C纳米线,获得均匀的Ag@C纳米线/CNT膜,提高膜的机械强度和导电性,实现大面积、可折叠、高效膜电极的构建。在Ag@C纳米线/CNT上原位生长具有赝电容性质的高活性纳米氧化物,提高其能量密度。以超级电容器体系评估制备的柔性电极在折叠状态下的电化学稳定性。优化材料合成条件和柔性电极组装工艺,比较各柔性电极的力学及电化学综合性能。调控形貌,揭示其构效关系及自组装成膜机制。可折叠Ag@C纳米线/碳基膜电极的研发将为高效柔性储能器的开发提供有利的技术支持和理论依据。
随着电子技术的蓬勃发展,寻找轻薄、可穿戴、柔性化的智能电子设备是迫切的需求,而储能设备的性能提升在于电极材料。本课题组从事MnO2的晶相和形态转化研究,首次使用Co2+作为相变诱导剂和离子掺杂剂,通过简便的工艺同时控制MnO2的晶相和几何形态。还制备了三维分层α-MnO2@δ-MnO2核壳异相纳米结构以提高电容性能。碳布用作基底,在其上水热生长α-MnO2纳米线作为二级支撑结构。在NaBH4水溶液中,MnO2表面在室温下被还原,形成α-MnO2/Mn3O4分层结构。此外,Co掺杂的MnO2纳米线在室温下被NaBH4溶液还原,在MnO2纳米线表面形成具有丰富氧空位和活性位点的MnCo2O4.5纳米片用于高效和非贵金属基催化剂。采用一步合成法制备了一种新型双配体Ni-MOF材料,并作为超级电容器电极材料进行了评价。通过聚乙烯吡咯烷酮和乙醇的协同作用简便、环保地合成Ni3S4量子点,用作超级电容器电极材料表现出优异的电化学性能。碳纳米管首先通过一种简便且温和的金属诱导自组装过程在镍泡沫的表面进行组织。随后,通过水热法将NiCoO2纳米片与CNTs薄膜结合,成功制备了集成的NiCoO2@CNTs@NF电极,自支撑电极具有分层三维网络结构、NiCoO2纳米片与泡沫镍基体结合力强、离子和电子传输导电隧道优良、离子吸附活性位点丰富、速度快等优点。.抗生素对水的污染和破坏引起人们的严重关注。我们构建了一种具有稳定荧光特性的Cd-MOF材料来检测水中的抗生素。MOF探针对头孢曲松钠的响应在水中可达ppb级,具有选择性高,响应时间快,耐酸碱,抗干扰能力强等优点。通过溶剂热反应以1,2-苯二乙酸和1,1-(1,4-丁二基)双(咪唑)为原料合成了二维锌(II)基金属有机骨架[Zn•(BA)•(BBI)])用于检测抗坏血酸和抗生素氯霉素和头孢曲松,该检测速度快且检测限低。开发基于Zr4+的金属有机凝胶(Zr-MOG)。Zr-MOG-2不仅获得了良好的荧光信号,为CrO42−提供了识别平台,可用于选择性检测水介质中的CrO42−。.体异质结电池结构开始受到越来越多的科学家关注。制备了三种基于COi6的非富勒烯受体,它们呈现1.31-1.37 eV 的低光学带隙和近红外区域的强吸收。基于COi6FIC和宽带隙共聚物供体的太阳能电池实现了9.12%的功率转换效率。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
肉苁蓉种子质量评价及药材初加工研究
宽弦高速跨音风扇颤振特性研究
基于导电聚合物-碳复合材料水凝胶电极的新型柔性超级电容器研究
含Fe金属有机骨架材料(FeMOF)-石墨烯柔性电极的制备,储能机制及组装高性能超级电容器件
多层次立体网结构的聚吡咯柔性超级电容器电极材料研究
中空碳纳米纤维基三维柔性超级电容器电极材料的制备及电化学性能