Epoxy molding compound (EMC) is the dominant material for the plastic encapsulation of semiconductor chips, but its matrix (binder) is usually unrenewable bisphenol A epoxy resins and the similar and bisphenol A is of high toxicity. At present, there is a significant progress in the study of biobased epoxy resins; however, due to their limited performances, they haven’t yet been used in high-performance EMC formulations. On the grounds of increasing the segment rigidity, cross-linking density and biomass content simultaneously, the applicant intents to synthesize eugenol-based biphenyl epoxy monomers (prepolymers) and polyphenol curing agents with a high content of reactive groups and a high biomass content. Subsequently, the curing reaction of the epoxy systems will be examined, and the mechanical, thermal, electrical, flame retardant and water-resistance properties of the cured epoxy products as well as their impact factors will be studied in detail to illuminate the structure-activity relationship. Also, these epoxy resins will be used as a matrix to fabricate a green EMC. It is expected that several eugenol-based biphenyl epoxy monomers (prepolymers) and polyphenol curing agents will be synthesized; their effects on the curing reaction of the resulting epoxy systems, the bulk properties of the cured epoxy products and the structure-activity relationships will be clarified. Also, the green EMC with excellent overall performances will be realized. This project will lay the foundation on high-performance, high-biomass-content epoxy resins for EMC applications, and promote the research on bio-based epoxy resins to expand to microelectronics and other high-tech and high-value-added sectors, therefore expressing the important research value and application foreground.
环氧模塑料(EMC)是半导体芯片塑封的主导材料,但其基体(粘结剂)通常是基于不可再生双酚A等的环氧树脂,并且双酚A毒性大。目前,对生物基环氧树脂研究已获很大进展,但受其性能制约,尚未用于高性能EMC体系。申请人从提高链段刚性、交联密度和生物质含量同时入手,拟合成反应性基团和生物质含量高的丁香酚基联苯型环氧单体(预聚物)和多元酚固化剂,用以构筑高性能全生物基环氧树脂体系。接着,分析体系的固化反应,深入研究固化物力学、热、电、阻燃、拒水性能及其影响因素,从而明确构效关系,并将其作为基体制备绿色EMC。预期将合成出多种丁香酚基联苯型环氧单体(预聚物)和多元酚固化剂;阐明它们对体系固化反应和本体性能的影响及构效关系;制备出综合性能优异的绿色EMC。本项目将为EMC用高性能、高生物质含量环氧树脂的研究奠定基础,促进生物基环氧树脂研究向微电子等高技术、高附加值等领域拓展,具有重要的研究价值和应用前景。
本项目针对开发高性能生物基环氧树脂以扩展其在电子封装等高技术领域的应用前景。以丁香酚为原料制备联苯型二官能度环氧树脂单体,优化了合成反应条件、简化了分离过程,从而解决了其高通量、低成本制备这一难题,获得的环氧单体的纯度高(可达96%以上),粘度较低。研究了树脂环氧单体的固化反应和其固化物的性能,发现它与一种常用环氧树脂二元胺固化剂的反应活性高,固化物的玻璃化转变温度适中、高温炭化率很高,水在其表面接触角较大、可燃性较低。此外,设计制备了以香草醛为原料、分子中含联苯单元的生物基酚醛树脂及多官能度酚醛环氧树脂,优化了合成反应条件,有效地调控了分子量。将上述酚醛树脂作为环氧树脂固化剂,发现固化物的玻璃化转变温度较高并受固化剂分子量的影响较大。就上述酚醛环氧树脂而言,发现其固化物的性能优异,玻璃化转变温度可高达236℃,可燃性和吸水率也较低。此外,通过简单方法合成了新型丁香酚环氧树脂含磷无卤阻燃剂,发现改性环氧树脂固化物的阻燃效果良好,同时材料刚性也有提高。还合成了香草醛基含磷双酚化物作为环氧树脂活性阻燃改性剂,不但显著提高了环氧树脂固化物的阻燃性能,还提高了力学性能,同时保持了较高的玻璃化转变温度。本项目为开发高性能生物基环氧树脂单体、预聚物、固化剂和功能性改性剂进行了诸多有益的尝试,研究成果将为指导高性能生物基环氧树脂的分子设计、低成本高通量制备、固化加工条件优选、结构性能优化和应用提供了有力的理论和技术支持。相信,本项目的研究成果不仅具有重要的科学价值,还具有一定的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
动物响应亚磁场的生化和分子机制
多官能侧链双酚型环氧树脂的设计、合成及性能的研究
纤维复合材料用含杂环结构新型环氧树脂的设计、合成及其结构与性能关系
千层金叶片中丁香酚-O-甲基转移酶高效催化甲基丁香酚合成的作用机制
高导热环氧模塑料的阻燃性能及导热与阻燃耦合作用机理