This project was preparing a new type of organic polymer solar cells with bulk-heterojunction and coaxial P-N junction inorganic nanocrystal arrays. Coaxial P-N junction inorganic nanocrystal arrays were synthesized via hydrothermal or template method by selecting appropriate P- and N-type inorganic nanocrystalline materials, which not only providing a shortcut for the electronic transmission, but also improving the absorption of solar energy. By adjusting the diameter, height and array pitch of coaxial P-N junction inorganic nanocrystalline arrays, the conjugated polymer/PCBM blends would well be filled into these arrays to form the active layer by spin coating. Then, the conjugated polymer/PCBM was driven self-assembly because of the orientation of liquid crystal (LC) phase and the interaction between LC molecules and the surface of coaxial P-N junction inorganic nanocrystal arrays. Furthermore, the arrays pitches were controlled within the dimensions of the exciton diffusion length to achieve nanometer scale microphase separation of the conjugated polymer/PCBM bulk-heterojunction and realize precise control of the morphology of the entire active layer, thereby inhibiting the exciton recombination, improving the charge generation, diffusion and transmission efficiency. It was promising to obtain organic polymer solar cells with high power conversion efficiency (PCE) by selecting electron donor conjugated polymers with different band gaps.
采用同轴P-N结无机纳米晶阵列与体相异质结相结合制备新型有机聚合物太阳能电池。通过选择合适的P型和N型无机纳米晶材料,采用水热法或模板法合成同轴P-N结无机纳米晶阵列,不仅为电子的传输提供捷径,还提高了对太阳能的吸收。通过调节同轴P-N结无机纳米晶阵列的直径、高度、阵列间距及其形貌,把共轭聚合物/PCBM通过旋涂甩膜方式填充阵列间形成活性层,再利用小分子液晶与同轴P-N结无机纳米晶阵列表面的相互作用和液晶的取向诱导作用,使表面富集液晶小分子的同轴P-N结无机纳米晶阵列发生自组装性驱动共轭聚合物/PCBM的有序堆砌。将同轴P-N结无机纳米晶阵列间距控制在激子扩散长度的尺寸范围,实现体相异质结给体/受体的纳米级微相分离,实现对整个活性层微观形貌的精确控制,从而抑制激子的复合,提高电荷的产生、扩散和传输效率。选择不同带隙的电子给体共轭聚合物制备得到高效率的有机聚合物太阳能电池。
该项目已在该项目已在Macromolecules (IF: 5.554); J. Mater. Chem. C (IF: 5.066); ACS Appl. Mater. Interfaces (IF: 7.145)等刊物上发表SCI论文19篇,其中影响因子大于3 以上16篇,影响因子大于5 以上7篇。作为第2完成人获江西省自然科学二等奖1项。提出了可控制备不同尺寸形貌(球状、棒状、支化状、四足体状、阵列)的无机纳米晶以及利用有机材料(液晶分子、有机染料等)修饰纳米晶构建有机聚合物太阳能电池的电子传输层,有效地提高了其电子传输效率以及与活性层和电极的界面接触面积,有利于激子的产生、分离与传输,并实现了器件性能显著提高至8.0%(Phys. Chem. Chem. Phys. 2016; J. Mater. Chem. C 2015; Org. Electron. 2015; RSC Adv. 2015; ACS Appl. Mater. Interfaces 2014)。提出了热致液晶共轭聚合物为模板原位生长纳米晶,控制纳米晶尺寸和形貌,提高杂化器件光电转化效率(Solar Energy 2016)。嵌段自组装原位制备杂化纳米纤维结构,最大化异质结界面(Macromolecules 2014)。嵌段共轭聚合物通过弱键协同自组装,构建双连续取向杂化异质结界面,提高界面激子分离效率(ACS Appl Mater Interfaces 2013)。侧链嵌段聚噻吩自组装调控异质结界面,改善电极界面欧姆接触,调节电极功函,器件效率提高至7.3%( J. Mater. Chem. C 2014)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
面向云工作流安全的任务调度方法
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
高有序有机本体异质结太阳能电池的制备与研究
一维有机纳米同轴异质结中的多重激子效应探索及其应用
基于分子层模板法制备有序体相异质结有机太阳能电池
环境友好型AgBiS2纳米晶异质结太阳能电池的制备与性能研究