To study the dynamic mechanisms and characteristics of flexible structures during the fluid-structure interaction (FSI) is significant to the ocean engineering community. The problem of FSI is inherently complicated and of much nonlinearity. The researchers usually solve this problem analytically or numerically. However, it is crucial to take some assumptions to make the analytical solution available, which usually results in an analytical solution that contains some error. The numerical solution relies on the computational capability and different algorithms can gain different results. Either solving the FSI problem analytically or numerically belongs to the category of forward problems. For the first time, the applicants will study the FSI problem from the perspective of inverse problem. We will develop a new time-frequency analysis method, which decomposes signal in each window into complex exponentials based on state-space model. From the time-frequency analysis results, we can observe the varying frequencies. We will conduct a comparative study on some classical system identification methods and find which one/ones is/are suitable for FSI problems. As mentioned, the system of FSI is usually nonlinear. We will make a piece-wise linear assumption, and extract the system parameters from each segment. With this, we can find the connection between the factors of the structure or fluid and the system parameters. Because we can find the generalized mass, stiffness and damping matrices by system identification, hydrodynamic parameters, such as added mass, added stiffness and added damping, are available. Based on the study of time-frequency analysis and system identification, we will implement model updating on the finite element model by CMCM method. To conduct time-frequency analysis, system identification and model updating has great scientific and practical importance.
流固耦合问题复杂,且非线性特征明显。求解该类问题时,解析法计算量小但要求很多简化,结果常无法代表真实的情况。数值法能给出量级上相当的估算,但其对计算机的要求较高且不同学者的研究结果常有所出入。解析法和数值法均属于正问题的范畴。本项目创新性地利用实测数据从反问题的角度开展研究。针对耦合问题中柔性结构非线性振动的动力特征,发展新的信号分析方法并将其与传统的时频分析方法进行对比。通过对实测数据的时频分析,研究结构振动频率和阻尼等随时间的变化情况。借助于理论分析和数值模拟等研究手段对现有的系统识别理论进行对比研究,探究适用于流固耦合系统的系统识别理论。结合分段线性化假定,对柔性结构流固耦合系统进行参数识别,探讨系统参数对振动特性的影响。基于时频分析和系统识别的结果,对现有的柔性结构有限元模型进行修正,使其更加合理。对流固耦合非线性振动问题进行时频分析、系统识别及模型修正具有重要学术意义和实用价值。
本项目完成了计划书所列的研究内容,未进行调整或变动,达到了预期研究目标。取得的研究进展包括以下五个方面:1)基于状态空间的信号分解与重构方法;2)基于短时Prony变换的时频分析新技术;3)深海半潜式平台系泊系统动力响应分析方法;4)深海柔性结构非线性动力响应分析技术;5)考虑边界条件修正的系泊缆索动力响应分析方法。同时,本项目于山东省海洋工程重点实验室开展了相关物理模型试验,对研究成果进行了系统验证。在本项目的资助下,出版专著1部,并在本领域权威期刊Journal of Sound and Vibration,Applied Ocean Research,Renewable Energy等发表科研论文12篇,其中SCI收录论文9篇,参加国内外学术会议、组织学术交流10余次;申请国家发明专利4项,授权软件著作权1项;项目组成员1人获得国家优秀青年科学基金资助,同时培养研究生5人;获海洋工程科学技术一等奖1项。研究成果得到了国际同行Mishra A.K、Bahai H.等人的高度关注,同时能为深海柔性结构的时频分析、系统识别及模型修正等提供新的技术手段。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
柔性仿生非线性流固耦合系统深度学习降阶模型研究
基于时频分析和非线性系统识别的建筑结构地震损伤识别研究
流固耦合系统的非线性响应分析及实验研究
强流耦合高阶非线性畸形波数学模型与时频演化特性研究