Based on the study of the equivalence between vehicle NVH design target programming and the design process itself, a full range of automotive NVH design system which covers ’vehicle assembly’, ‘system assembly’, ‘subsystem assembly’, and ‘component’ has been proposed. This system depends on a multi-level NVH design target decomposition which adapts to the vehicle physical construction. Therefore, the system can be used to support NVH development and design of typical vehicle effectively. This is essential to the development of vehicle NVH design theory and technological innovation. In this research, the key problem is to reveal the direct quantitative relationship between adjacent level design targets themselves. Since it is very difficult for traditional vibro-acoustic analysis method such as FEA (Finite Element Analysis) and SEA (Statistical Energy Analysis) to ensure the analysis precision and coordinate precision and efficiency, the concept of ‘interface’ is introduced to constrain the vehicle sound and vibration analysis to the relative structure surface. With this concept, a simple and efficient vehicle sound and vibration model can be developed. This research is focused on revealing the key scientific problems, i.e. ‘The coupling law of elastomer interface dynamic characteristic and surface dynamic response’ and ‘The mechanism of interface unit system characteristic to vehicle NVH’. Thus, a new recognition of vehicle sound and vibration analysis is acquired, and consequently a new vibro-acoustic analysis design theory and method is developed, which can be used to guide extensive engineering applications.
立足于汽车NVH设计目标规划与设计过程本身的完全等价性,依托于汽车物理构造相适应的多层级的NVH设计目标分解,建立覆盖“整车”、“系统”、“子系统”直至“零部件”的全方位的汽车NVH设计体系,以有效支持具体车型的NVH开发设计,对于汽车NVH设计理论与技术的创新发展具有重要意义。研究中,针对相邻层级设计目标间直接定量关系揭示这一核心问题,为克服以FEA、SEA为代表的传统声振分析手段建模复杂、难以同时保证分析精度和效率的困难,将对车辆系统的声振分析限制于相关车辆构造表面,进而引入“界面”的概念,基于界面动态特征新建简捷而高效的车辆声振分析模型。其工作重心是对“界面动态特征与关联弹性体表面动态响应的耦合规律”以及“界面单元系统特性对NVH的作用机理”这两方面具有内在联系的关键科学问题的深刻揭示与把握,由此获得对车辆声振机理的全新认识,以构建声振分析领域全新的理论与方法体系,指导相关工程应用。
汽车NVH是指因噪声、振动及其耦合效应而引发的车辆驾乘舒适性问题,严重时会给驾乘者带来心理和生理上的不良影响。NVH被业内公认为“整车问题”,其产生、分析与解决几乎涉及了汽车全部的物理构造,具有“全覆盖、弱相关”的鲜明特征。当前以FEA、SEA为代表的传统声振分析手段建模复杂,难以同时保证分析精度和效率。为突破这一瓶颈,以汽车NVH设计开发的性能目标关注为立足点,基于对车辆声振现象产生与传播规律的认识与分析,引入“界面”的概念,并将车辆系统的声振分析限制于相关车辆构造的表面与界面上,从而摆脱对传统的高度复杂的车辆系统声振仿真模型的依赖。具体研究中,围绕预定目标,按时全面完成了各阶段各项研究内容和指标。在“界面动态特征与关联弹性体表面动态响应的耦合规律”及“界面单元系统特性对NVH的作用机理”两方面获得了实质性的研究进展,并提出了基于界面能量流的结构声振分析算法。由此获得对车辆声振机理的全新认识,进而初步构建起车辆声振分析的全新理论与方法体系,可有效支持汽车NVH性能分析与工程设计。同时,本项目相关成果也可指导高铁、航空、船舶等大交通领域更广泛的工程应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
内点最大化与冗余点控制的小型无人机遥感图像配准
基于多模态信息特征融合的犯罪预测算法研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
基于广义积分规则的汽车NVH中频问题计算方法研究
面向多层级目标的汽车NVH不确定性优化理论与应用研究
基于多资源多目标动态瓶颈工序的智能工艺规划模型与方法
面向异形动态目标的视觉伺服轨迹规划与跟踪方法研究