Catalytic reduction CO2 that using water as hydrogen source, the solar energy and electrical power as driving force has the advantages of reducing emission and converting CO2 to liquid carbon fuels economically. This program will be carried out in mild conditions. We get SiC NWs by in situ selectively etching and then by electrodeposition to assemble Cu2O nanoparticles into SiC NWs arrays, finally we get Cu2O/SiC NWs photoelectronic dual interfaces catalyst. For future study, we reveal CO2 photoelectric collaborative catalytic reduction mechanism, as well as the relation between the Cu2O/SiC dual interfaces catalysis structure and the activity of photoelectrocatalytic reduction CO2. Combining excellent SiC NWs photocatalyst with outstanding Cu2O electrocatalyst it will get high effective reduction of photoelectric collaborative catalytic CO2. Meanwhile it will improve the selectivity of CO2 reduction with the help of excellent electric catalytic performance and high selectivity of Cu2O nanoparticles. The design idea of photoelectric dual interfaces catalytic materials exhibits distinctive innovation, which is a new way to construct electrode materials with effective photoelectric catalytic reduction ability. This provides a new approach and theoretical support for exploring the CO2 reduction electrode with effective photoelectric integration.
以水为氢源,以太阳能和电能为驱动力,催化还原CO2,不但减排,而且能经济的将CO2转化为液态碳质燃料。该项目拟在温和条件下通过选择性蚀刻原位生长出SiC纳米线(SiC NWs),用电沉积方法将Cu2O纳米粒子组装到SiC NWs阵列,得到Cu2O/SiC NWs光电双催化界面的催化剂。进一步研究和揭示Cu2O/SiC NWs双催化界面结构与其光电催化还原CO2活性之间的关系,探讨光电协同催化还原CO2的机理。将优异的SiC NWs光催化剂与优异的Cu2O电催化剂结合,将获得高效的CO2光电协同催化还原功效;同时,借助Cu2O纳米粒子的优异电催化性能和产物高选择性,将提高CO2还原的选择性。这种光电双界面催化剂材料的设计思路具有鲜明的创新性,是构建高效光电催化还原电极材料的一条崭新途径,为探索高效光电一体化还原CO2电极提供新思路和理论支持。
以水为氢源,以太阳能和电能为驱动力,催化还原CO2,不但减排,而且能经济的将CO2转化为液态碳质燃料。该项目拟在温和条件下通过选择性蚀刻原位生长出SiC纳米线(SiC NWs),用电沉积方法将Cu2O纳米粒子组装到SiC NWs阵列,得到Cu2O/SiC NWs光电双催化界面的催化剂。进一步研究和揭示Cu2O/SiC NWs双催化界面结构与其光电催化还原CO2活性之间的关系,探讨光电协同催化还原CO2的机理。将优异的SiC NWs光催化剂与优异的Cu2O电催化剂结合,将获得高效的CO2光电协同催化还原功效;同时,借助Cu2O纳米粒子的优异电催化性能和产物高选择性,将提高CO2还原的选择性。这种光电双界面催化剂材料的设计思路具有鲜明的创新性,是构建高效光电催化还原电极材料的一条崭新途径,为探索高效光电一体化还原CO2电极提供新思路和理论支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
复杂系统科学研究进展
萃取过程中微观到宏观的多尺度超分子组装 --离子液体的特异性功能
具有随机多跳时变时延的多航天器协同编队姿态一致性
多元化企业IT协同的维度及测量
光电协同催化还原CO2:光阳极与阴极材料的设计制备及界面调控研究
微生物-电极界面生物电催化还原二氧化碳的纳米强化机制
纳米合金与有机催化剂修饰碳电极催化CO2电还原合成甲醇/乙烯的研究
界面调控的Z型TiO2纳米管(带)阵列光电极构筑及协同氧化还原机制