Cuprous oxide (Cu2O) films have been regarded as a potential application material in solar cells. However, the current reported conversion efficiency of Cu2O film solar cell is very low, because of their poor electrical property, poor interface quality and mismatch band gap of epitaxial material. To solve these issues, we will use the N-Na co-doping technique to realize the high electrical performance of Cu2O films. AgInZnS quantum dots with some advantages such as high absorption coefficient,trapping effect and innocuity, could be inserted into the Cu2O solar cell layer to improve the interface quality. In addition, its band gap tunability may have a good match with the band gap of epitaxial material, which could be used to realize the fast electron-hole separation.. The main research work of this project is listed below:1. We will study the N-Na co-doping technique mechanism to enhance the electrical property and obtain high quality Cu2O films. 2.We will make a study about AgInZnS quantum dots(QDs) how to affect the performance of interface's morphology. 3. We will also discuss the relation between the AgInZnS QDs band gap and the conversion efficiency enhancement mechanisms. Based on these, we will fabricate the high performance of ZnO/AgInZnS QDs/Cu2O heterojunction solar cells. The outcomes of this research project will provide some new views for enhancing the photon-to-electron conversion efficiency of Cu2O films solar cells.
氧化亚铜薄膜(Cu2O)被认为是一种非常有应用价值的太阳能电池材料。然而,目前报道的Cu2O电池效率很低,主要原因是制备的Cu2O电学性能低、界面质量差、与外延材料带隙不匹配。为解决这些问题,本项目通过N-Na共掺杂手段实现电学性能的提高。AgInZnS量子点具有高的吸系数、陷光效应和无毒的特点。引入AgInZnS量子点作电池的中间层,可以改善Cu2O薄膜的界面质量。另外,其带隙的可调性可以和外延材料较好地匹配,加速光生电子-空穴对的分离。. 主要工作有:1.研究N-Na共掺Cu2O薄膜提高其电学性能的机理,获得高质量Cu2O薄膜。2.研究AgInZnS量子点对Cu2O界面形貌的影响。3.探讨AgInZnS量子点带隙与光电装换效率提高的内在关系。在此基础上,制备高性能ZnO/AgInZnS量子点/Cu2O异质电池。该项目的研究成果为提高Cu2O薄膜太阳能电池效率提供了新的研究思路。
氧化亚铜薄膜(Cu2O)被认为是一种非常有应用价值的太阳能电池材料。然而,目前报道的Cu2O电池效率很低,主要原因是制备的Cu2O电学性能低、界面质量差、与外延材料带隙不匹配。为解决这些问题,本项目研究了N-Na共掺杂手段实现其电学性能的提高。AgInZnS量子点具有高的吸系数、陷光效应和无毒的特点。引入AgInZnS量子点作电池的中间层,可以改善Cu2O薄膜的界面质量。另外,其带隙的可调性可以和外延材料较好地匹配,加速光生电子-空穴对的分离。主要成果有:1.发现了N-Na共掺Cu2O薄膜提高其电学性能的机理,获得高质量Cu2O薄膜。2.实现了AgInZnS量子点对Cu2O界面形貌的影响。3.获得了AgInZnS量子点带隙与光电装换效率提高的内在关系。在此基础上,制备了高性能ZnO/AgInZnS量子点/Cu2O异质电池,,实现了高达10%效率的电池器件。该项目的研究成果为提高Cu2O薄膜太阳能电池效率提供了新的研究思路。.发表SCI论文22篇,SCI他引1700次,单篇他引超100次的有8篇(第一/通讯), 9篇ESI论文(第一/通讯),作邀请报告10次;授权发明专利6项;获省部级二等奖及其它奖励13项(第一完成人),入选重青年拔尖人才。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
一类基于量子程序理论的序列效应代数
基于体素化图卷积网络的三维点云目标检测方法
PbS量子点薄膜作缓冲层的ZnO纳米杆与Cu2O薄膜异质结太阳电池
p型Cu2O薄膜的δ掺杂及其异质结特性研究
TiO2(ZnO)/Cu2O薄膜阵列异质结的结构调控及光电性能研究
CdSe量子点/Cu2O纳米柱阵列PN结的制备与光电转换性能研究