The great progress that semiconductor waveguide has made in nonlinear optics has greatly promoted the development of integrated optics. As a new class of semiconductor waveguide, glass-clad semiconductor optical fibers are more competitive than the silicon-on-insulator (SOI) waveguides in terms of device length, flexibility, and all-optical device integration. However, the current semiconductor optical fibers are still not ideal in the core diameter, loss, and single crystal rate; their nonlinear optical applications also need further study. The project proposes the self-invented on-line feeding method for drawing high-purity semiconductor optical fibers; the use of laser processing to optimize their performances to achieve low-loss optical fibers; the use of laser processing technology to achieve highly nonlinear fibers; the study of their optical nonlinearities through experiment. The project will address important scientific issues such as cladding diffusion control of the molten core drawing method, laser induced purification and single-crystal growth of semiconductor fiber, structure design and high efficiency coupling of highly nonlinear fiber. The project has important scientific significance; the research results will lay the foundation for the development and nonlinear optical application of semiconductor optical fiber.
半导体波导在非线性光学方面取得的巨大进步,极大地推动了集成光学器件的发展。玻璃包层的半导体光纤作为新型的半导体波导,在器件长度、灵活性、全光器件集成等方面比芯片式波导结构更具竞争优势。然而目前半导体光纤在芯径、损耗、单晶率等方面仍不理想,其非线性光学应用还需深入研究。本项目提出基于自主发明的在线投料法拉制高纯度半导体光纤;利用激光处理对光纤性能优化实现光纤的低损耗;利用激光加工技术实现光纤功能化;通过实验测试研究其光学非线性。项目将解决熔融芯拉丝法的包层扩散控制、半导体光纤激光诱导提纯与单晶化、高非线性光纤结构设计与高效率耦合等重要科学问题。本项目具有重要的科学意义,研究成果将为半导体光纤的开发和非线性光学应用打下基础。
玻璃包层的半导体光纤作为新型的半导体波导,在器件长度、灵活性、全光器件集成等方面比芯片式波导结构更具竞争优势。然而目前半导体光纤在芯径、损耗、单晶率等方面仍不理想,其非线性光学应用还需深入研究。本项目提出基于自主发明的在线投料法拉制高纯度半导体光纤;利用激光处理对光纤性能优化实现光纤的低损耗;利用激光加工技术实现光纤功能化;通过实验测试研究其光学非线性。本项目对在线投料法进行了改进和优化,拉制出了锗芯光纤和硅芯光纤。一次拉丝性得到1.6 μm纤芯的Ge光纤,EDS结果显示,纤芯内SiO2接近为0,表明SiO2没有扩散到Ge芯部,获得了高纯Ge芯石英包层光纤。二次拉制Si芯光纤,获得熔融芯法报道的最细的Si芯光纤,芯径达413 nm,在>2 μm波长满足单模传输条件。项目部分解决了熔融芯拉丝法的包层扩散控制、半导体光纤激光诱导提纯与单晶化、高非线性光纤结构设计与高效率耦合等重要科学问题。本项目具有重要的科学意义,研究成果为半导体光纤的开发和非线性光学应用打下基础。.在项目研究过程中受到启发,将相关现象及处理方法应用到微晶玻璃的研究中。经过特殊处理的样品活性离子的空间发布得以改善,去除玻璃网络中稀土离子的残留使之仅存在与纳米晶粒中,微晶玻璃的整体发光得到显著提升。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
硅锗半导体芯石英包层光纤的制备与特性研究
石英极化光纤制备与特性研究
半导体薄膜内包层光纤放大机理与传输特性的研究
基于锗酸盐玻璃双包层高掺杂铥光子晶体光纤的制备与性能研究