Crystalline porous conductive materials are one of the hot frontier studies in optoelectronic devices, solar photovoltaic devices and novel semiconductor catalysts due to the excellent properties of low density, high porosity, large specific surface area. Due to the defects of low conductivity, difficulty in structure modification, high cost in processing on inorganic porous conductive materials and organic porous conductive materials, the application of the two materials are limited. In this proposal, we suggest a better solution, that is, incorporating organic cations to metal halide perovskites to make a new type of crystalline porous conductive inorganic-organic hybrid materials. The molecular level assembly will combine the desirable physical properties of both inorganic mental halides(e.g. high thermal and high electrical conductivity) and organic components (e.g. structural tunability, low cost and ease of processing) to gain a new type of crystalline porous conductive materials based on the “heterosis”. Some research tools, such as crystallographic analyses, physical performance tests, and theoretical calculations are used to analyze the structure-function relationship between the compositions, structures, and properties of the hybrids. Meanwhile, we will make efforts to sum up the law of synthesizing this type of hybrid material, and optimize the properties based on the structure-function relationship. Furthermore, this study can greatly enrich the properties of crystalline porous conductive inorganic-organic hybrid materials and broaden the scope of their potential applications. We expect to gain 2-3 systems, and publish 6-8 papers.
晶态多孔导电材料因其密度小、孔隙率高、比表面积大等独特性质在光电子器件、太阳能光伏产业和新型半导体催化剂等方面具有很大的应用前景。目前研究的无机或有机多孔导电材料存在电导率低、结构难修饰、加工成本高等缺陷而限制了其应用。针对这个问题,本项目提出在导电性较好的无机金属卤化物钙钛矿结构中引入有机阳离子,形成新型晶态无机-有机杂化多孔导电材料,并利用晶体学结构分析、性能测试和理论计算等手段分析晶态无机-有机杂化多孔导电材料的组成、结构与性能之间的构效关系,总结设计合成此类材料的经验规律,利用构效关系优化材料的性能。这种在分子水平上的组装将揉合无机金属卤化物导电性强、热稳定性高和有机材料结构易修饰、性能可调控及加工方便的优势,获得“杂交优势”的新型晶态多孔导电材料。此研究将极大地丰富晶态无机-有机杂化多孔导电材料的性能并拓宽其应用范围,预期获得2-3个体系化合物,发表6-8篇SCI文章。
晶态多孔导电材料因其密度小、孔隙率高、比表面积大等独特性质在光电子器件、太阳能光伏产业和新型半导体催化剂等方面具有很大的应用前景。在本项目执行期内,我们围绕晶态多孔导电材料这一主题,设计合成了系列具有导电功能的无机-有机杂化多孔材料。研究了其导电、发光、多孔等性能,获得了若干创新成果:例如,用三乙烯二胺阳离子和乙基化的三乙烯二胺阳离子为模板剂,合成了两个具有不同孔尺寸的三维多孔框架结构的氯化铅杂化材料。由于无机和有机组分的发光可以自由调控,化合物的白光发射显色指数达到96,是目前单组份白光材料中最高的。用丙基化的三乙烯二胺和碘化铅阴离子二核簇为模板剂,获得了非常罕见的碘化铅纳米管结构,该结构如碳纳米管一样具有各向异性的导电性能。通过结构设计,用乙基化的三乙烯二胺为模板剂,合成了首例具有稳定多孔结构的碘化铅杂化材料,该化合物具有1nm的孔道结构,对甲醇、乙醇气体表现出选择性吸附的能力,并在甲醇、乙醇蒸汽的气氛下,其导电性分别增加5个和4个量级。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
面向云工作流安全的任务调度方法
基于二维材料的自旋-轨道矩研究进展
高压工况对天然气滤芯性能影响的实验研究
有机-无机杂化反钙钛矿铁电体定向设计与合成
新型钙钛矿结构的有机-无机杂化光电功能材料
无铅无机-有机杂化金属卤化物的合成与光电性质研究
钙钛矿型有机/无机杂化半导体材料的分子剪裁与组装