Wide use and discharge of antibiotics leads to adverse effect to environmental ecosystem and human health. NF/RO and photo-electrochemical treatments can control pollutions including antibiotics, but with high energy consumption and membrane fouling bottle-neck problems. This proposal intends to use extraordinary high activity triple heterojunction catalysts and base electrode (carbon and/or metal) to prepare (photo)-electrocatalytic membrane anode, to efficiently destroy recalcitrant pollutants including antibiotics, and provide electrons flow to external circuit for electricity generation. Triple heterojuction catalyst will be prepared from compositing TiO2/BiVO4/ZnIn2S4 with Fe/Co/Ni dopants and conductive nano carbons (RGO or CNT or g-C3N4), loading onto electrodes membranes, and tested in photocatalysis/electro-catalysis, photo-electro-catalysis in photocatalytic fuel cell reactor, for anodic oxidation of antibiotics pollutants. AFM, SEM/EDX and TEM will be used for structural & morphological characterization and optimization of triple hetero-junctions and (photo)electro-catalytic membrane anode, CV EIS and ESR will be used to study catalytic reaction mechanism. Separation property of photocatalytic anode membrane will be studied using measurements of the pore size, permeate flux/Transmembrane Pressure/filtration cycles.PFC with this kind of membrane electrode will be investigated for electricity generation, removal efficiency of pollutants such as antibiotics . This new technique will be compared in energy consumption and treatment cost.
养殖业抗生素的大量使用和排放,对生态环境和人体健康影响很大。纳滤反渗透及光电催化可控制包括抗生素在内的污染,但存在高能耗和膜污染等瓶颈问题。本研究拟利用超高活性三元异质结催化剂和导电基体(碳电极或金属基体)制备具有光电催化和膜分离性能的阳极,以光催化燃料电池PFC形式,高效催化降解抗生素类污染物并通过向外电路输出电子而产电。应用TiO2、BiVO4或ZnIn2S4,掺杂Fe、Co、Ni与纳米碳(RGO/CNT/g-C3N4) 制备高活性三元异质结催化剂,再与导电基体复合构建催化电极膜;通过AFM、EDX SEM、TEM表征和研究电极膜结构与形态,通过对比光催化,电催化,光电催化及PFC产电性能,优化电极膜催化性能;用CV、EIS ESR 研究阳极催化反应机制;通过测定电极膜的孔径/通量、跨膜压差/过滤周期等研究膜分离性能;研究该产电催化体系去除抗生素等污染物的效率。对比污染控制能耗和成本。
利用高活性三元异质结催化剂和导电基体(碳纤维或金属基体)制备具有光电催化和膜分离性能的阳极, 以光催化燃料电池PFC形式,高效催化降解抗生素类污染物并通过向外电路输出电子而产电。 应用TiO2、BiVO4或ZnIn2S4等,掺杂Fe、Co、Ni与纳米碳(RGO/CNT/g-C3N4) 制备高活性三元异质结催化剂,再与导电基体复合构建催化电极膜;通过AFM、EDX SEM、TEM表征和研究电极膜结构与形态,通过对比光催化,电催化,光电催化及PFC产电性能,优化电极膜催化性能;用CV、EIS ESR 研究阳极催化反应机制;通过测定电极膜的性质、 膜分离性能等研究了该产电催化体系去除抗生素等污染物的效率。对比污染控制能耗和成本。获得了几组高效催化电极和光催化燃料电池组合,研究了黄连素、四环素的光催化降解情况、光催化燃料电池系统中的降解速率和产电情况,了解了电极基底、污染物浓度、助剂、pH、对电极对PFC产电、污染物降解的影响。得到了主要氧化物种、催化剂组成及性能的优化组合;还扩展研究了PFC降解处理实际废水的情况和产电性能、还耦合MFC生物阳极的作用,研究了一体生物电池、光催化电池的系统及其处理废水的影响因素。取得成果包括论文、专利、学术报告等50余项。培养了博士5人、硕士11+、学士12人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
稳定高效产电细菌生物膜构建研究
Si/SiGe异质结阴/阳极电势控制高速LIGBT新器件研究
窄带隙/氧化物微观异质结半导体构建与光催化产氢研究
基于Z型光阳极的光催化燃料电池设计与除污产电性能研究