The bio-inspired spine adhesion is suitable for the application of rough wall surface environment widely existing in nature. However, spine arrays in previously developed wall climbing robots are uncontrollable, and the adhesion stability and environmental adaptability are insufficient, which seriously restrict the application of wall climbing robots in the real world. It is essential to deeply understand the compliance of the fluid-filled sac and the synergetic adhesion mechanism of spine arrays, and this proposal focuses on the adhesion regulation mechanism of spine arrays with a bio-inspired compliant fluid-filled sac. By analyzing the adhesion regulation effect of the compliant fluid-filled sac of animal’s adhesion feet, a mathematical model for the bio-inspired adhesion regulation system is established to clarify the regulation mechanism of spine arrays with rough surface morphology adaptability and load sharing. Considering the random characteristics of the spine adhesion on the rough surface, a probabilistic model for the synergetic adhesion mechanism of spine arrays is established to study the adhesion regulation properties on different roughness wall surfaces, thereby optimizing the regulation system and improving the adhesion performance and adaptability to a variety of rough walls. Establish the elastic driving mechanism model of the biological sac adhesion regulation system, and study the fast and accurate control method of the spine arrays, and develop the prototype of the bio-inspired adhesion regulation system, and verify its feasibility and effectiveness through experiments. The active adhesion regulation mechanism of spine arrays will lay a theoretical and applied basis for the improvement of adhesion stability and environmental adaptability of the bio-inspired wall climbing robot.
仿生爪刺粘附适用于自然界广泛存在的粗糙壁面应用环境,但现有仿生爬壁机器人足部爪刺阵列不可调控,粘附稳定性和环境适应性不足,严重制约了仿生爬壁机器人的实际应用。本项目从液囊结构的柔顺特性和爪刺阵列协同作用机理出发,开展基于仿生柔性液囊结构的爪刺阵列粘附调控机制研究。通过分析生物粘附足柔性液囊结构的调控作用,建立仿生液囊粘附调控系统的数理模型,阐明爪刺阵列适应壁面形貌、均布载荷的调控机制;考虑爪刺阵列在粗糙壁面上粘附的随机特性,建立爪刺阵列协同粘附概率模型,研究不同粗糙度壁面上爪刺阵列的粘附调控性能,进而优化调控系统,提高爪刺阵列的粘附性能和对多种粗糙壁面的适应性;建立生物液囊调控系统的弹性驱动机理模型,进而研究快速精确的爪刺阵列调控方法,研制仿生粘附调控系统原理样机,实验验证爪刺阵列粘附调控的可行性及有效性,实现爪刺阵列主动调控,为仿生爬壁机器人提高粘附稳定性和环境适应性奠定理论和应用基础。
仿生爪刺粘附适用于自然界广泛存在的粗糙壁面应用环境,但现有仿生爬壁机器人足部爪刺阵列不可调控,粘附稳定性和环境适应性不足,严重制约了仿生爬壁机器人的实际应用。.在本项目的支持下,项目团队开展了基于仿生柔性液囊结构的爪刺阵列粘附调控机制研究:1)研究柔性液囊结构在爪刺阵列适应壁面形貌、均布载荷中的调控作用,仿生设计了爪刺阵列粘附调控系统;2)建立了爪刺阵列在粗糙壁面上的协同粘附概率模型,研究了不同粗糙度壁面上爪刺阵列的粘附性能;3)设计了粘附调控系统的弹性驱动,研制了仿生粘附调控系统原理样机,实验结果表明基于柔性液囊结构的爪刺阵列调控系统是可行和有效的,实现了爪刺阵列主动调控和载荷均布功能;4)设计并研制了仿生爪刺式履带爬壁机器人,实现了在粗糙顶面和壁面上稳定爬行。本项目的相关研究成果可以为仿生爬壁机器人提高粘附稳定性和环境适应性提供理论基础和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
强震作用下铁路隧道横通道交叉结构抗震措施研究
耗散粒子动力学中固壁模型对纳米颗粒 吸附模拟的影响
热塑性复合材料机器人铺放系统设计及工艺优化研究
仿生柔性刺状阵列结构的缓冲特性及调控研究
仿生味觉自适应柔性纳米电极阵列构建研究
仿生微纳米粘附阵列的SOC控制机理与集成方法
具有梯度弹性模量的仿生微纳米柱状阵列的粘附性能研究