Woodpeckers have an excellent pecking ability with the characteristics of high frequency, high speed, and high strike force. By virtue of the positive and passive vibration isolation in its head and the coordinating motion in its body (especially, the dynamic adjustment mechanism between the stiffness and preload in its hyoid), the woodpecker’s head can be protected under the impact where the impact energy can be dissipated. Inspired by this biological principle, we aim at developing a new sampling mechanism by imitating the dynamic adjustment mechanism in its hyoid and its anti-impact properties for the future applications of sampling hard rock and soil in the planetary exploration mission. Firstly, the micro-nano structure and viscoelastic properties of the hyoid and skull of the woodpecker are analyzed; combining the high-speed X-ray imaging technology, the intelligent adjustment model of the woodpecker in the pecking process is established, which aims to analyze the mapping relationships between the hyoid property (stiffness and preload) and the pecking parameters (frequency, speed, and force) and reveal the dynamic adjustment mechanism of the woodpecker hyoid in the pecking process. Secondly, the intelligent materials and multi-layer passive damping materials are used to fabricate the bionic hyoid and skull; the new damping pecking sampling mechanism is developed by imitating the pecking movement principle. Finally, based on the aforementioned study, a planet bionic sampling robot, which has the functions such as the walk, detection, pecking, hammering, sample selecting, sampling and collection, is developed. The research results of the project will provide a technical preparation for the future planetary exploration and have important research value and application prospect.
啄木鸟具有高频、高速、高冲击啄击能力,通过头部主被动减振和身体协调,特别是舌骨刚度和预紧力的动态调节,实现了高强度啄击下脑部的安全防护以及冲击能量的有效耗散。受此启发,针对星球探测任务中对硬质岩土自主采样需求,拟研制仿啄木鸟舌骨动态调节机理、可抑制啄击振动冲击的新型啄取采样机构。本项目首先分析啄木鸟舌骨和颅骨微纳结构与粘弹特性,并结合高速X光成像摄影技术,建立啄木鸟啄击过程智能调节模型,阐明舌骨刚度和预紧力与啄击频率、啄击速度、啄击力的映射关系,揭示啄木鸟啄击过程中舌骨的动态调节机制;利用智能材料及多层被动减振材料设计仿生舌骨和仿生颅骨,通过喙部啄击信号反馈调控仿生舌骨的刚度和预紧力,研发新型减振啄取采样机构并进行测试和优化;在上述基础上,研制具有行走、探测、啄击、锤击、选样、取样、收集等功能的星球仿生采样机器人。项目研究成果将为未来星球探测提供技术筹备,具有重要研究价值和广阔应用前景。
本课题针对星球探测任务中对硬质岩土自主采样需求,分析啄木鸟舌骨和颅骨微纳结构与粘弹特性,并结合高速X光成像摄影技术,建立啄木鸟啄击过程智能调节模型,揭示了啄木鸟啄击过程中舌骨的动态调节机制;利用智能材料及多层被动减振材料设计仿生舌骨和仿生颅骨,研发新型减振啄取采样机构并进行测试和优化;在上述基础上,研制具有多功能于一体的星球仿生采样机器人。. 取得的创新性研究成果如下:1) 开展了啄木鸟头部微结构及粘弹性力学特性分析,测试了脑组织的力学特性,建立了脑组织的精准力学本构模型,研究分析了所设计的多层抗冲击结构内部颗粒粒径、颗粒填充率、泡沫板和橡胶板的组合方式对抗冲击系数的影响;2) 提出了啄木鸟头部及全身抗冲击动态调控机制,提出基于体段模型的体段匹配方法用于测量啄木鸟啄击运动的姿态和形态,揭示了啄木鸟头部抗冲击的减振机理根据总结的四层减振系统,设计了一种多方向的多层抗冲击结构;3) 研发制备了高强度、多孔水凝胶智能减振材料;4) 进行了啄取机构设计及优化,完成了关键部件的拓扑优化及参数优化;5) 完成仿生采样机构的样机研制并开展了仿真及试验研究,试验表明该采样机构对不同地面具有很强的适应能力,完成了预定采样任务。. 在上述研究基础上,依托本课题共发表学术论文40篇(其中SCI检索论文32篇、EI检索论文2篇);出版机器人领域国际会议论文集《智能机器人与应用》(Intelligent Robotics andApplications Part I~VI)1 部,荣获2020年施普林格•自然(Springer Nature) “中国新发展奖 (China New Development Awards)”;申请发明/实用新型专利23项,授权7项;项目相关成果获得辽宁省技术发明奖一等奖、中国振动工程学会技术发明奖二等奖等奖励。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
热塑性复合材料机器人铺放系统设计及工艺优化研究
柔性基、柔性铰空间机器人基于状态观测的改进模糊免疫混合控制及抑振研究
内燃机非稳定工况扭振激振力矩 试验分析
基于仿生浮力调节的水下机器人主动环境自适应调节机理研究
生物滚动减振机制及星球车弹性车轮仿生研究
基于变形仿生鳍的水面机器人减摇机理的研究
基于仿生的最小能耗和姿态优化的机器人机理研究