Effective reutilization of industrial waste heat is an important issue in the field of energy-saving & emission-reduction of Industrial Processes in China. Low working temperature of waste heat and its mismatch contradiction between energy demand & energy supply is the common problem in the reutilization of low-grade therm energy of many Industrial Processes. An innovative target-oriented solid-gas thermochemical sorption heat transformer thermodynamical cycle is proposed to achieve the rational temperature matching and cascade energy utilization of industrial waste heat by developing an advanced thermal mangnement method for integrating energy storage & energy upgrade. The operating principle of the thermochemical sorption energy storage is based on the reversible solid-gas chemical reaction whereby thermal energy is stored in the form of chemical bonds with thermochemical sorption process. The high-density thermchemical energy storage, combined cooling & heating supply and large temperature rise of industrial waste heat can be achieved by introducing the novel thermochemical sorption cycle based on the pressure-reducing desorption principle during chrging process and the temperature-rise adsorption principle during discharging process. Moreover, the proposed thermochemical sorption heat transformer has a distinct advantage of its target-oriented characteristic for the temperature rise of the stored thermal energy. The temperature magnitude of energy upgrade can be effectively adjusted by choosing appropriate sorption working pairs, in which the heat input temperature from external available heat source for energy storage and the heat output temperature for energy release of the end consumer are combined as the target-oriented requirement. Based on the systematic research about the relative fundmental issues and key technologies, the operating mechanism about high-density thermochemical energy storage and advanced thermochemical heat transformer for the large temperature rise of industrial waste heat will be revealed. The flexible combined cooling & heating supply and energy mangement method for adjusting the mismatch between energy demand & energy supply of industrial waste heat will be found according to the different requirments. Moreover, the operating strategy for the high-efficient energy storage & energy upgrade of low-grade thermal energy based on novel thermochemical sorption heat transformer will be elaborated. The high-performance new composite materials will be fabricated and compact energy storage devices will be demonstrated for the application and retuilization of industrial waste heat. The proposed target-oriented thermochemical sorption heat transformer has the potential to provide an advanced energy mangnement method for the integrated energy storage & energy upgrade of low-grade thermal energy when compared with the conventional sensible heat and latent heat energy storage technologies. As a result, the fundamental theory and key technologies of thermochemical sorption energy storage & energy upgrade of industrial waste heat will be expected to establish after performing the Research Project. The research results will provide theoretical guidance and technical support for the development of energy-saving and emission-reduction in Industrial Processes.
工业余热的有效回收利用是我国工业领域节能减排的重要方向,本项目针对工业余热温度品位低及跨局域利用面临能量供需调节的难题,以实现工业余热温度对口、梯级利用与高效调配为目标,提出了一种基于变压解吸和变温吸附原理的目标导向大温差热化学吸附储能及热变温升温调控方法,利用热能与吸附势能的相互转化实现能量的储存与释放,涵盖工业余热的能量品位提升、冷热联供、热化学储能技术为一体,且升温幅度可根据外界余热温度的高低和热用户需求为目标导向进行调控。通过对相关科学问题和关键技术的深入研究,揭示工业余热的规模化高密度热化学吸附储能机理及大温差热变温升温调控机制,确立基于目标导向热变温技术的中低温工业余热的大温差品位提升及高效储能优配方案,探究工业余热因地制宜的冷热联供调控方法,研发出具有自主知识产权的储热新材料、新装置,以期实现工业余热的跨局域高效调配与综合利用,为我国工业领域的节能减排提供理论基础和技术支撑。
在国家自然科学基金的资助下,课题组研究人员针对低品位余热温度较低限制其有效回收利用及跨区域利用过程中面临能量供需调节的关键科学问题,以实现工业余热温度对口、梯级利用与高效调配为目标,通过耦合热化学变压解吸、变温吸附、以及热化学吸附储能,提出了一种基于变压解吸和变温吸附原理的目标导向大温差热化学吸附储能及热变温升温调控方法,涵盖工业余热的能量品位提升、冷/热联供、高密度复合储能等内容,通过固-气可逆化学反应过程中工业余热与化学吸附势能的相互转化实现低品位能源向高品位能源的提升。通过对相关内容的深入研究,主要取得以下成果:(1) 构建了基于“降压解吸-升温吸附”的新型热化学吸附储能/供能复合循环,可实现高达86 oC的升温幅度;(2) 成功研制了以多孔材料为基质的高密度吸附储能复合材料,揭示了固-气物理吸附、固-气化学吸附、固-液相变、以及液-气吸收的多形态热化学储能机理,获得了创纪录的储能密度,高达7768 kJ/kg;(3) 阐明了水合盐热化学的反应动力学特性,揭示了升温速率对水合盐相变与热化学脱水的影响机理,阐述了热化学储热及相变储热的转变机制;(4) 建立了热化学储能供能实验测试系统,可实现中低温热能品位的有效提升,系统火用效率和能量效率达到0.75和0.43;(5) 成功研发了具有自主知识产权的30kWh大容量热化学吸附储热新装置,可以实现高密度热化学储能与高效冷热联供。.本项目取得了系列创新突破,理论研究方面构建了基于卤化盐热化学吸附体系的能质调控热力循环,关键技术方面实现了大温差的能量品位提升与高密度热化学储能。在国际重要期刊上发表SCI检索论文17篇,其中2篇研究论文入选ESI高被引论文,本项目为第一标注的多篇论文发表在Nature Communications、Energy & Environmental Science、Advanced Materials、Angewandte Chemie-Int Ed、ACS Central Science、Nano Energy、Small、Energy Storage Materials等国际著名期刊;授权国家发明专利2项;培养全国博新人才计划入选者博士后2名、上海市超级博士后3名、博士研究生4名、硕士研究生2名,应邀做大会主旨/主题报告8次,获得上海市科技进步二等奖1项、中国节能协会技术发明二等奖1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种改进的多目标正余弦优化算法
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
工业萝卜泡菜发酵过程中理化特性及真菌群落多样性分析
基于低品位余热利用的热化学再吸附发电、制冷及储能特性研究
双模式太阳能热化学吸附长周期复合储能特性研究
太阳能高密度跨季节储存的吸收/吸附储热机理研究
多品位大温差余热低[火用]损梯级转化联合循环的耦合及协同优化研究