多个导联ECG/EEG信号的多元时间序列特征提取及鉴别诊断方法研究

基本信息
批准号:81773545
项目类别:面上项目
资助金额:60.00
负责人:张晋昕
学科分类:
依托单位:中山大学
批准年份:2017
结题年份:2021
起止时间:2018-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:高永祥,骆福添,李济宾,刘素芳,周倩,田晶,陈逸敏,黄嘉玲,李秀秀
关键词:
四分位数间距ECG/EEG分类方差相关系数Shannon熵
结项摘要

Electrophysiological diagram is of great value in diagnosing cardiac or cerebral abnormalities,which contains the periodic information of physiological processes and time-dependent information reflecting the electrical conduction of myocardial cells and ions flow.We apply Maximal Overlap Discrete Wavelet Transform (MODWT) to ECG/EEG signal, and extract the four features including variance, correlation coefficient, interquartile range and Shannon entropy.Then feature selection and discriminant model are carried out to differentiate between the signal patterns of healthy subjects and patients with specific heart or brain disorders. Based on myocardial infarction, arrhythmia and sleep disorders datasets from PhysioBank database, we explore the feasibility of this method. Furthermore, we will establish a database of ECG/EEG signals and corresponding physical symptoms so that more information can be used to discriminate diseases accurately. The approach developed will be a feasible classification strategy to diagnose abnormal ECG/EEG automatically and we intend to provide the perfection of diagnostic guidelines.

电生理图蕴涵机体生理过程的周期性信息和时间先后的电位变化相关性信息,对于诊断心脏或大脑活动的异常具有重要价值。本研究对ECG/EEG信号进行极大重叠离散小波变换(MODWT)后,提取方差、相关系数、四分位数间距、Shannon熵这4个特征,进行特征选择,进而建立判别模型,对心血管疾病或脑神经系统疾病进行鉴别诊断。本课题组基于PhysioBank标准数据库的心肌梗死、心律失常、睡眠障碍的数据,分别探索本方法的可行性。进一步拟建立不同疾病的ECG/EEG信号及相关生理指标的实例数据库,综合更多的信息进行更准确的疾病判别。本研究结合电信号特征信息和生理指标进行定量分析,为心血管疾病或脑神经系统疾病的自动诊断和疾病鉴别诊断标准(如心肌梗死、癫痫等)的完善提供依据。

项目摘要

(1)通过模拟研究和对标准数据库中ECG/EEG信号进行探索,提取更为稳健的非参数特征:四分位数间距(interquartile range,IQR)、小波Spearman相关系数和小波熵等,将提出的非参数特征法与现有的参数特征法进行比较。并探讨不同或较少导联组合下参数特征法和非参数特征法的预测效果。.(2)对电生理信号进行定量分析,提出一种多导联自动睡眠分期的方法辅助医生顺利完成工作,提高工作效率,加快睡眠情况的分析进度。分别探讨本方法基于脑电(EEG)以及脑电信号和眼电(EOG)结合两种方式的预测效果。将利用脑电信号与利用脑电信号和眼电信号结合两种方式进行比较,探讨不同信号对预测效果的影响。.(3)通过对生理电信号ECG/EEG及相关信息的定量分析,建立模型对心肌梗死、阿尔茨海默症等心血管系统、神经系统疾病进行预测,减轻医生负担;分别探讨本方法基于心电以及心电信号和生理指标相结合两种方式的预测效果,分析个体因素对预测准确性的影响。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

DOI:
发表时间:2020
2

多源数据驱动CNN-GRU模型的公交客流量分类预测

多源数据驱动CNN-GRU模型的公交客流量分类预测

DOI:10.19818/j.cnki.1671-1637.2021.05.022
发表时间:2021
3

Hybrid Digital-Analog Video Delivery With Shannon-Kotel'nikov Mapping

Hybrid Digital-Analog Video Delivery With Shannon-Kotel'nikov Mapping

DOI:10.1109/TMM.2017.2785264
发表时间:2018
4

Parallel Sequence-Channel Projection Convolutional Neural Network for EEG-Based Emotion Recognition

Parallel Sequence-Channel Projection Convolutional Neural Network for EEG-Based Emotion Recognition

DOI:10.1109/ACCESS.2020.3039542
发表时间:2020
5

Identifying the mislabeled training samples of ECG signals using machine learning

Identifying the mislabeled training samples of ECG signals using machine learning

DOI:10.1016/j.bspc.2018.08.026
发表时间:2019

张晋昕的其他基金

批准号:30872182
批准年份:2008
资助金额:30.00
项目类别:面上项目

相似国自然基金

1

多类EEG信号的时空特征提取研究

批准号:61075009
批准年份:2010
负责人:王海贤
学科分类:F0304
资助金额:37.00
项目类别:面上项目
2

人脸线性鉴别特征提取方法的深化研究

批准号:60975006
批准年份:2009
负责人:宋枫溪
学科分类:F0304
资助金额:30.00
项目类别:面上项目
3

旋转机械耦合故障微弱信号特征提取与诊断方法研究

批准号:61903224
批准年份:2019
负责人:张法业
学科分类:F0306
资助金额:23.00
项目类别:青年科学基金项目
4

面向特征提取的深度鉴别稀疏表示学习方法研究

批准号:61806098
批准年份:2018
负责人:常合友
学科分类:F0605
资助金额:22.00
项目类别:青年科学基金项目